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Announcements
• This is my first time teaching

• Do (privately) give me feedback on the course (sm2558)

• This course is structured as interactive lectures
• Lectures for sessions 1-3, going through RL basics
• If something is unclear, or you have questions or comments stop me and we

will discuss them
• We will go off on tangents if interesting questions arise, please participate!

• This course is very short (3 full lectures)
• We only have time to focus on one RL algorithm
• If you are interested in a full course, reach out to the department or try out

the Berkeley or UAlberta online courses
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Resources

1. Reinforcement Learning, an Introduction (2018, Sutton and Barto)
• Available for free online (legal)
• All the RL theory you will ever need
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• All the RL theory you will ever need

2. David Silver’s slides for his RL course at UCL
• Builds good intuition
• Alternative if you don’t like my lectures

3. OpenAI Spinning Up
• Mixes theory with implementation

4. CleanRL
• Verified, single-file implementations of many RL algorithms
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Module Goal: Provide a proper understanding of the theoretical
foundations of RL
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Module Goal: Provide a proper understanding of the theoretical
foundations of RL

Module Goal: Teach you enough to apply RL to solve interesting
problems
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Course Content

1. Markov Decision Processes
2. Q Learning
3. Student presentations & Miniproject
4. If time permits:

1. Deep Deterministic Policy Gradient
2. Partially Observable Processes
3. Intrinsic Motivation
4. Multiagent RL
5. Dreamer/World Models
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Grading

1. Attendance (5%)
2. Participation (5%)
3. Presentation and Report (20%)
4. Miniproject (70%)
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Presentation and Report
• Presentation and report on an extension of reinforcement learning you find interesting

• Model-based reinforcement learning
• Multiagent RL
• RL applied to chemistry, LLMs, etc

• Presentation and report should:
• Explain what the topic is and why it’s important
• List a few seminal papers on the topic and briefly summarize each
• List some promising results and identify where further research is required
• Propose a research project to further our understanding of the topic

• Due at the start of the final lecture session
• Report ≤ 4 pages
• Presentation length:  10 mins

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 1: Introduction 9 / 29



Miniproject

In-depth project handout given at the end of the final session In a
nutshell:
• Implement Deep Q learning in JAX+Equinox that solves a simple

video game
• Free to use external libraries for data collection and storage
• Must write the training loop and loss functions yourself

• Once working, extend it
• New tasks (e.g., pixel-based, biology, etc)
• Improvements (e.g., double q learning, recurrent policies, etc)

• Submit code and a ≤ 4 page write up
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Let’s get started



Applications of RL

Reinforcement learning (RL) is a framework for decision making.
Applications include:
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Applications of RL

Reinforcement learning (RL) is a framework for decision making.
Applications include:

• Autonomous vehicles
• Video game NPCs
• Alignment in large language models
• Behavior modeling in psychology/ecology/biology
• Material and drug design
• Finance
• Artificial General Intelligence?
• Anywhere with cause and effect

• Where you change the world by interacting with it
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The Agent and Environment

Agent

Environment

𝑠𝑡

𝑟𝑡

𝑎𝑡

𝑠𝑡: state, 𝑎𝑡: action, 𝑟𝑡: reward

• In RL, we have the agent and
environment
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𝑟𝑡

𝑎𝑡

𝑠𝑡: state, 𝑎𝑡: action, 𝑟𝑡: reward

• In RL, we have the agent and
environment

• The agent takes actions in the
environment

• Actions change the environment
state, producing an new state
and reward

• The cycle continues for
𝑡 = 0, 1, …

• Goal is to maximize the
cumulative reward
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Questions?



Exercise

Can anybody come up with a real world problem that lends itself to RL?
• Agent taking actions in an environment, in search of some reward
• What is the agent, and what is the environment? The reward?
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Markov Decision Processes
Deep Reinforcement Learning

University of Cambridge



Last Time

Agent

Environment

𝑠𝑡

𝑟𝑡

𝑎𝑡

𝑠𝑡: state, 𝑎𝑡: action, 𝑟𝑡: reward
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Markov Decision Processes

By definition, RL solves Markov Decision Processes (MDPs).
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Markov Decision Processes

By definition, RL solves Markov Decision Processes (MDPs).

To solve a problem using RL, we first must convert the problem into an
MDP. We call this converted problem the environment.

How you structure your problem is critical – more important than
which algorithms you use, how much compute you have, etc.
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Markov Decision Processes
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Definition: An MDP is a 5-tuple (𝑆, 𝐴, 𝑇 , 𝑅, 𝛾)

𝑆 is the set of states known as the state space.

𝐴 is the set of actions known as the action space

𝑇 : 𝑆 × 𝐴 → Δ𝑆  The state transition function.

𝑅 : 𝑆 → ℝ is the reward function.

𝛾 ∈ [0, 1] is a discount factor that we will explain later

Let us briefly explain these terms.
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State Transition Function
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This is a Markov decision process because transition dynamics are
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Reward Function

𝑅 : 𝑆 → ℝ is the reward function.

Produces reward based on the state

Reward function determines agent behavior

+100 for pushing objects onto the floor, or +100 for pushing objects to
the centre
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This is a Markov decision process because transition dynamics are
conditionally independent of past states and actions
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Key Concept: To be Markov, state must contain sufficient information to
predict next state
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Super Mario Bros
• State Space (𝑺)?
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Super Mario Bros
• State Space (𝑺)?

• The position and velocity
(𝑥, 𝑦, ̇𝑥, ̇𝑦) of Mario and Goombas

• The score
• Number of coins collected
• The time remaining
• Which question blocks have been

opened
• Which goombas have been

squished
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Super Mario Bros
• State Space (𝑺)?

• The position and velocity
(𝑥, 𝑦, ̇𝑥, ̇𝑦) of Mario and Goombas

• The score
• Number of coins collected
• The time remaining
• Which question blocks have been

opened
• Which goombas have been

squished

𝑆 = {ℝ4, ℝ4, …, ℤ+, ℤ+, ℤ+, {0, 1}𝑘}
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Super Mario Bros

• State Space (𝑺)?

2x256x240x3 pixels.

E.g. 
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• State Space (𝑺)?
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⎟⎞
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⎝
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⎜⎜
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⎜⎛(

255
0
0

)

(
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100
235

)

⋮

(
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)

(
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)

…

…
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⎟⎟
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Two images necessary to compute
velocities!
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⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛(
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0
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)

(
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)

⋮

(
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)

(
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)

…

…
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⎟⎞

Two images necessary to compute
velocities!

𝑆 = ℤ2×256×240×3
<255
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Super Mario Bros
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Super Mario Bros

• Action Space (𝑨)?
• Acceleration of Mario �̈�
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Super Mario Bros

• Action Space (𝑨)?
• Acceleration of Mario �̈�

• But when playing Mario, we
cannot explicitly set �̈�
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Super Mario Bros

• Action Space (𝑨)?
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Super Mario Bros

• Action Space (𝑨)?
• The Nintendo controller has A,

B, up, down, left, right buttons
• 𝐴 = {𝐴, 𝐵, up, down, left, right}
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Super Mario Bros

• Action Space (𝑨)?
• The Nintendo controller has A,

B, up, down, left, right buttons
• 𝐴 = {𝐴, 𝐵, up, down, left, right}

• Cannot represent pressing
multiple buttons at once
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Super Mario Bros

• Action Space (𝑨)?
• The Nintendo controller has A,

B, up, down, left, right buttons
• 𝐴 = {𝐴, 𝐵, up, down, left, right}

• Cannot represent pressing
multiple buttons at once

• 𝐴 = {0, 1}5
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