
Markov Decision Processes
Deep Reinforcement Learning

University of Cambridge



Overview

1. Lecture (approx. 1 hour)
1. Review
2. Finish up MDPs
3. Agents/policies
4. Derive and define Q learning

2. Discussion/questions (approx. 30 mins)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 2 / 53



Overview

1. Lecture (approx. 1 hour)
1. Review
2. Finish up MDPs
3. Agents/policies
4. Derive and define Q learning

2. Discussion/questions (approx. 30 mins)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 3 / 53



Review

Last time we talked about MDPs

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 4 / 53



Review

Last time we talked about MDPs

Designed state and action spaces for Mario

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 4 / 53



Review

Last time we talked about MDPs

Designed state and action spaces for Mario

Let’s briefly review the MDP
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Markov Decision Processes

Definition: An MDP is a 5-tuple (𝑆, 𝐴, 𝑇 , 𝑅, 𝛾)

𝑆 is the set of states known as the state space.

𝐴 is the set of actions known as the action space

𝑇 : 𝑆 × 𝐴 → Δ𝑆  The state transition function.

𝑅 : 𝑆 → ℝ is the reward function.

𝛾 ∈ [0, 1] is a discount factor that we will explain later
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new state

This is a Markov decision process because transition dynamics are
conditionally independent of past states and actions

𝑇 (𝑠𝑡, 𝑎𝑡 | 𝑠𝑡−1, 𝑎𝑡−1, …, 𝑠0, 𝑎0) = 𝑇 (𝑠𝑡, 𝑎𝑡)

If conditional independence is violated, the process is not Markov

𝑇 (𝑠𝑡, 𝑎𝑡) ≠ 𝑇 (𝑠𝑡, 𝑎𝑡 | 𝑠𝑡−1) ⟸ Not Markov!

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 6 / 53



Super Mario Bros
• State Space (𝑺)?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 7 / 53



Super Mario Bros
• State Space (𝑺)?

• The position and velocity
(𝑥, 𝑦, ̇𝑥, ̇𝑦) of Mario and Goombas

• The score
• Number of coins collected
• The time remaining
• Which question blocks have been

opened
• Which goombas have been

squished
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Super Mario Bros
• State Space (𝑺)?

• The position and velocity
(𝑥, 𝑦, ̇𝑥, ̇𝑦) of Mario and Goombas

• The score
• Number of coins collected
• The time remaining
• Which question blocks have been

opened
• Which goombas have been

squished

𝑆 = {ℝ4, ℝ4, …, ℤ+, ℤ+, ℤ+, {0, 1}𝑘}
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𝑆 = ℤ2×256×240×3
<255
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Super Mario Bros

• Action Space (𝑨)?
• Acceleration of Mario 𝒙̈

• But when playing Mario, we
cannot explicitly set 𝒙̈
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Super Mario Bros

• Action Space (𝑨)?
• The Nintendo controller has A,

B, up, down, left, right buttons
• 𝐴 = {𝐴, 𝐵, up, down, left, right}
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Super Mario Bros

• Action Space (𝑨)?
• The Nintendo controller has A,

B, up, down, left, right buttons
• 𝐴 = {𝐴, 𝐵, up, down, left, right}

• Cannot represent pressing
multiple buttons at once

• 𝐴 = {0, 1}6

•

⎩{
⎨
{⎧

{0, 1, 2, 3, 4}⏟⏟⏟⏟⏟
∅,direction

, {0, 1, 2, 3}⏟⏟⏟⏟⏟
∅,a,b,a+b ⎭}

⎬
}⎫
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Super Mario Bros

• Transition Function (𝑻 )?
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Super Mario Bros

• Transition Function (𝑻 )?
• 𝑇 (pixel_state, right)

• Move the Mario pixels right,
unless a wall

• Difficult to write down
• Deterministic
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Super Mario Bros

• Transition Function (𝑻 )?
• 𝑇 (pos_vel_state, acc. right)
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Super Mario Bros

• Transition Function (𝑻 )?
• 𝑇 (pos_vel_state, acc. right)

• Changes Mario’s (𝑥, 𝑦, ̇𝑥, ̇𝑦)
in game memory

• Human understandable,
easier to implement for
game developers
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Markov States

Question: In Mario, a single
image frame is not a Markov state.
How come?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 14 / 53



Markov States

Question: In Mario, a single
image frame is not a Markov state.
How come?

Answer: Cannot measure velocity.
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Markov States
Question: Why do we need velocity in
the state?
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Markov States
Question: Why do we need velocity in
the state?

Answer: If we don’t have it, Markov
property is violated

𝑇 (𝑠𝑡, 𝑎𝑡): Mario is going up, down, left
or right

𝑇 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1): Mario is going right
with velocity 1 m/s

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 15 / 53



Markov States
Question: Why do we need velocity in
the state?

Answer: If we don’t have it, Markov
property is violated

𝑇 (𝑠𝑡, 𝑎𝑡): Mario is going up, down, left
or right

𝑇 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1): Mario is going right
with velocity 1 m/s

Not conditionally independent!
𝑇 (𝑠𝑡, 𝑎𝑡 | 𝑠𝑡−1, 𝑎𝑡−1, …, 𝑠0, 𝑎0) ≠ 𝑇 (𝑠𝑡, 𝑎𝑡)
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Super Mario Bros

• Reward (𝑹)?
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Super Mario Bros

• Reward (𝑹)?
• 1 for beating the level and 0

otherwise
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Super Mario Bros

• Reward (𝑹)?
• 1 for beating the level and 0
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• Total score
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Super Mario Bros

• Reward (𝑹)?
• 1 for beating the level and 0

otherwise
• Total score
• 1 for beating the level +

0.01 ⋅ score
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Markov Decision Processes

• 𝑆✓
• 𝐴✓
• 𝑇✓
• 𝑅✓
• 𝛾?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 17 / 53



Markov Decision Processes

Agent goal in RL is to maximize the cumulative reward
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Markov Decision Processes

Agent goal in RL is to maximize the cumulative reward

The cumulative reward is called the return (𝑮)

𝐺 = ∑
∞

𝑡=0
𝑅(𝑠𝑡+1) = ∑

∞

𝑡=0
𝑟𝑡
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Markov Decision Processes

Agent goal in RL is to maximize the cumulative reward

The cumulative reward is called the return (𝑮)

𝐺 = ∑
∞

𝑡=0
𝑅(𝑠𝑡+1) = ∑

∞

𝑡=0
𝑟𝑡

Note that we care about all future rewards, not just the current reward!
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Markov Decision Processes

Not all rewards are created equal
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Markov Decision Processes

Not all rewards are created equal

Experiment: one cookie now, or two cookies in a year?

Usually, humans and animals prefer rewards sooner.

The discount factor 𝜸 injects this preference into RL. Results in the
discounted return (G)

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 = 𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 + …

0 ≤ 𝛾 ≤ 1
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Markov Decision Processes

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 = 𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 + …

0 ≤ 𝛾 ≤ 1

With a reward of 1 at each timestep and 𝛾 = 0.9

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 = 1 + 0.9 + 0.81 + … =

1
1 − 𝛾

= 10
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MDP Wrap Up

Exercise: Reinforcement learning also describes human and animal
behaviors. How can you describe your behavior using reinforcement
learning?
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MDP Wrap Up

Exercise: Reinforcement learning also describes human and animal
behaviors. How can you describe your behavior using reinforcement
learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Action Space: Either go to the Cambridge Blue or go home
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MDP Wrap Up

Exercise: Reinforcement learning also describes human and animal
behaviors. How can you describe your behavior using reinforcement
learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Action Space: Either go to the Cambridge Blue or go home

Reward Function: 100 ⋅ drinkbeer − 1
𝑚𝑤rain
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MDP Wrap Up

Exercise: Reinforcement learning also describes human and animal
behaviors. How can you describe your behavior using reinforcement
learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Action Space: Either go to the Cambridge Blue or go home

Reward Function: 100 ⋅ drinkbeer − 1
𝑚𝑤rain

This happens internally when I decide to go to the pub after work
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Agents and Policies
Deep Reinforcement Learning

University of Cambridge



Reinforcement Learning

𝜋

Agent

𝑇

Environment

𝑠𝑡

𝑟𝑡

𝑎𝑡

𝑠𝑡: state, 𝑎𝑡: action,
𝑟𝑡: reward, 𝜋: policy,
𝑇 : transition fn

• We have defined the
environment
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Reinforcement Learning

𝜋

Agent

𝑇

Environment

𝑠𝑡

𝑟𝑡

𝑎𝑡

𝑠𝑡: state, 𝑎𝑡: action,
𝑟𝑡: reward, 𝜋: policy,
𝑇 : transition fn

• We have defined the
environment

• Now let us define the agent
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Policies

The agent acts following a policy 𝜋.
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Policies

The agent acts following a policy 𝜋.

𝜋 : 𝑆 → Δ𝐴 is a mapping from states to actions (or action
probabilities), determining agent behavior in the MDP.
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Policies

The agent acts following a policy 𝜋.

𝜋 : 𝑆 → Δ𝐴 is a mapping from states to actions (or action
probabilities), determining agent behavior in the MDP.

𝑎𝑡 ∼ 𝜋(𝑠𝑡)

𝜋(𝑎𝑡 | 𝑠𝑡)
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Policies

The policy that maximizes the return (𝐺) is called an optimal policy (𝝅∗)
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Policies

The policy that maximizes the return (𝐺) is called an optimal policy (𝝅∗)

𝜋∗ = max
𝜋

∑
∞

𝑡=0
𝛾𝑡𝑟𝑡
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Policies

The policy that maximizes the return (𝐺) is called an optimal policy (𝝅∗)

𝜋∗ = max
𝜋

∑
∞

𝑡=0
𝛾𝑡𝑟𝑡

Even though the reward function is deterministic, the transitions and
policy influencing it are stochastic. The optimal policy must take this
uncertainty into account.
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Even though the reward function is deterministic, the transitions and
policy influencing it are stochastic. The optimal policy must take this
uncertainty into account.
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𝑟𝑡 ∼
⎣
⎢
⎡𝑅(𝑠𝑡+1)⏟

reward fn

state trans. probs
⏞⏞⏞⏞⏞⏞⏞𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)⏟⏟⏟⏟⏟

action probs⎦
⎥
⎤

The expectation turns that distribution into a single number. This tells
us what reward to expect “on average”

𝔼[𝑟𝑡] = ∫
𝑠𝑡+1

∫
𝐴

𝑅(𝑠𝑡+1)⏟
reward fn

state trans. probs
⏞⏞⏞⏞⏞⏞⏞𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)⏟⏟⏟⏟⏟

action probs
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∑
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𝑡=0
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𝑠𝑡+1

∫
𝐴

𝑅(𝑠𝑡+1)𝑇 (𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)

In English: We need to consider the action distribution combined with
our state transition distribution when computing the reward/return

We write the return as the expectation given our policy actions.

𝜋∗ = max
𝜋

 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Now our policy is optimal with respect to all the uncertainty present!
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We use algorithms to search for the optimal policy 𝜋∗
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Algorithms

We use algorithms to search for the optimal policy 𝜋∗

Virtually all algorithms are based on either Q Learning (QL), Policy
Gradient (PG), or both

Popular algorithms:
• Deep Q Networks (DQN)
• Proximal Policy Optimization (PPO)
• Deep Deterministic Policy Gradient (DDPG)
• Twin Deep Deterministic Policy Gradient (TD3)
• Soft Actor Critic (SAC)
• Advantage Weighted Regression (AWR)
• Asynchronous Actor Critic (A2C)
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Algorithms

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and Q/V function

DDPG: Q learning with continuous actions via learned argmax

TD3: DDPG with action noise and a double Q trick

SAC: TD3 with entropy bonuses

AWR: Offline policy gradient with Q/V function

A2C: Policy gradient with Q/V function
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Q Learning

1. Lecture (approx. 1 hour)
1. Review
2. Finish up MDPs
3. Agents/policies
4. Derive and define Q learning

2. Discussion/questions (approx. 30 mins)
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Q Learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)
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Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as
discussed, many algorithms add tricks to Q learning

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑄
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Step 1: The Value Function

Recall the discounted return of a specific policy 𝜋
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In English: At each timestep, we take an action 𝑎𝑡 ∼ 𝜋(𝑠𝑡)

follow the state transition function 𝑠𝑡+1 ∼ 𝑇(𝑠𝑡, 𝑎𝑡)

and get a reward 𝑟𝑡 = 𝑅(𝑠𝑡+1)
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𝐺𝜋 = 𝔼[∑∞
𝑡=0 𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Rather than start the return from a given timestep, what if we defined it
from a given state?

We call this the Value Function (𝑽𝝅) 𝑉𝜋 : 𝑆 → ℝ

𝑉𝜋(𝑠0) = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Measures the value of a state (how good is it to be in this state?), for a
given policy 𝜋
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Step 2: Deriving Q

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑽
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑄
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Let’s go one step further. What if the value function were conditioned
on the first action?

First, let’s factor out the upcoming reward
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∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

When 𝑉  depends on a specific action, we call it the Q function:

𝑆 × 𝐴 → ℝ
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∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

The Q function might appear simple but it is very powerful

𝑎0 affects your next state 𝑠1, which affects the future

𝑠1

𝑠0

𝑠1

𝑠2

𝑠2 …

…

𝑎0 = 1

𝑎0 = 2
𝑎1

𝑎1
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Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Example: You have MPhil offers from Cambridge and Oxford
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𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Example: You have MPhil offers from Cambridge and Oxford

𝑎0 = {Oxford, Cambridge}
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Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Example: You have MPhil offers from Cambridge and Oxford

𝑎0 = {Oxford, Cambridge}

Q function gives you a number denoting how much better your life will
be for attending Cambridge (based on your behavior 𝜋). Takes into
account reward (based on income, friend group, experiences, etc).
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Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

𝑄(𝑠0, Cambridge) = 𝑓(friends + experiences + income) = 1200
𝑄(𝑠0, Oxford) = 𝑓(friends + experiences + income) = 900
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Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

𝑄(𝑠0, Cambridge) = 𝑓(friends + experiences + income) = 1200
𝑄(𝑠0, Oxford) = 𝑓(friends + experiences + income) = 900

𝑠1

𝑠0

𝑠1

𝑠2

𝑠2 …

…

𝑎0 = 1

𝑎0 = 2
𝑎1

𝑎1
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Step 3: Find the Policy

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑸
4. Learn to train 𝑄
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Step 3: Find the Policy

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

We know the Q function for a specific policy 𝜋, but how does this help
us learn a policy?
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Step 3: Find the Policy

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

We know the Q function for a specific policy 𝜋, but how does this help
us learn a policy?

What would the Q function for the optimal policy 𝜋∗ look like? Just add
∗ to 𝜋
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𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

We know the Q function for a specific policy 𝜋, but how does this help
us learn a policy?

What would the Q function for the optimal policy 𝜋∗ look like? Just add
∗ to 𝜋

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]
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Step 3: Find the Policy

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]

Richard Bellman proved that a greedy policy is optimal (see the Bellman
Equation)

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)
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Step 3: Find the Policy

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]

Richard Bellman proved that a greedy policy is optimal (see the Bellman
Equation)

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

In English: Just take things one step at a time. Compute Q value for all
possible actions and pick the action with the biggest Q value. Repeat at
each timestep.
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𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

𝑸∗(𝒔𝟎, 𝐂𝐚𝐦𝐛𝐫𝐢𝐝𝐠𝐞) = 𝒇(𝐟𝐫𝐢𝐞𝐧𝐝𝐬 + 𝐞𝐱𝐩𝐞𝐫𝐢𝐞𝐧𝐜𝐞𝐬 + 𝐢𝐧𝐜𝐨𝐦𝐞) = 𝟏𝟐𝟎𝟎
𝑄∗(𝑠0, Oxford) = 𝑓(friends + experiences + income) = 900
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𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]
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∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]

We can rewrite 𝑄∗ using our new 𝜋∗

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]
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∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]

We can rewrite 𝑄∗ using our new 𝜋∗

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

Sidenote: OpenAI’s leaked AI breakthrough named 𝑄∗ is likely related to this!
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Step 4: Train Q

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑸
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Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]
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Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼

⎣
⎢
⎢
⎢
⎡

∑
∞

𝑡=1
𝛾𝑡𝑟𝑡

⏟
Very annoying

| 𝑎𝑡 = argmax
{𝑎∈𝐴}

𝑄(𝑠𝑡, 𝑎)

⎦
⎥
⎥
⎥
⎤
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Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼

⎣
⎢
⎢
⎢
⎡

∑
∞

𝑡=1
𝛾𝑡𝑟𝑡

⏟
Very annoying

| 𝑎𝑡 = argmax
{𝑎∈𝐴}

𝑄(𝑠𝑡, 𝑎)

⎦
⎥
⎥
⎥
⎤

After infinite time, we will have one datapoint for training. Can we get
rid of the infinite sum?
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Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

Factoring out the first element worked before, let’s try it again
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𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] +

𝛾 ⋅ 𝔼[𝑟1 | 𝑎1 = argmax
{𝑎∈𝐴}

𝑄∗(𝑠0, 𝑎)] + 𝔼[∑
∞

𝑡=2
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]
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𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] +

𝛾 ⋅ 𝔼[𝑟1 | 𝑎1 = argmax
{𝑎∈𝐴}

𝑄(𝑠1, 𝑎)] + 𝔼[∑
∞

𝑡=2
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

It is the Q function starting at 𝑠1, a recursive formulation!

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝛾 ⋅ max
{𝑎∈𝐴}

𝑄∗(𝑠1, 𝑎)
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Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝛾 ⋅ max
{𝑎∈𝐴}

𝑄∗(𝑠1, 𝑎)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 50 / 53



Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝛾 ⋅ max
{𝑎∈𝐴}

𝑄∗(𝑠1, 𝑎)

Often written more simply as

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)
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Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝛾 ⋅ max
{𝑎∈𝐴}

𝑄∗(𝑠1, 𝑎)

Often written more simply as

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)

With the infinite sum gone, this is much easier to compute
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Summary
We defined the 𝑄 function

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)
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𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)

We defined the optimal policy given the 𝑄 function

𝜋(𝑠) = argmax
𝑎∈𝐴

𝑄(𝑠, 𝑎, 𝜃)
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Summary
We defined the 𝑄 function

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)

We defined the optimal policy given the 𝑄 function

𝜋(𝑠) = argmax
𝑎∈𝐴

𝑄(𝑠, 𝑎, 𝜃)

We defined the Q function training objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ argmax
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2
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Next Time

Homework: Read Human-level control through deep reinforcement
learning, Mnih et. al
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Homework: Read Human-level control through deep reinforcement
learning, Mnih et. al

They go from our Q learning definition to an agent that can beat
humans at most Atari games
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Next Time

Homework: Read Human-level control through deep reinforcement
learning, Mnih et. al

They go from our Q learning definition to an agent that can beat
humans at most Atari games

This is what your miniproject is based on

Next Time: We will focus on a practical implementation of Deep Q
Learning
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Discussion Topics
1. Go around and introduce everyone

• Name and 2-3 sentences why they chose this module
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Discussion Topics
1. Go around and introduce everyone

• Name and 2-3 sentences why they chose this module

2. What “works” in RL?
• Why aren’t there robots delivering me lunch and folding my laundry?

3. ML/RL was supposed to free us from menial labor and give us time to pursue
our passions
• Now thousands of people provide thumbs up/thumbs down for ChatGPT

completions 40 hours a week, while GPT-based models produce art, music,
creative writing, etc
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• Now thousands of people provide thumbs up/thumbs down for ChatGPT

completions 40 hours a week, while GPT-based models produce art, music,
creative writing, etc

4. What are you most excited to learn about next?
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