

Deep Reinforcement Learning

University of Cambridge

Overview

- 1. Lecture (approx. 1 hour)
 - 1. Review
 - 2. Finish up MDPs
 - 3. Agents/policies
 - 4. Derive and define Q learning
- 2. Discussion/questions (approx. 30 mins)

Overview

- 1. Lecture (approx. 1 hour)
 - 1. Review
 - 2. Finish up MDPs
 - 3. Agents/policies
 - 4. Derive and define Q learning
- 2. Discussion/questions (approx. 30 mins)

Review

Last time we talked about MDPs

Review

Last time we talked about MDPs

Designed state and action spaces for Mario

Review

Last time we talked about MDPs

Designed state and action spaces for Mario

Let's briefly review the MDP

Definition: An MDP is a 5-tuple (S, A, T, R, γ)

Definition: An MDP is a 5-tuple (S, A, T, R, γ)

S is the set of states known as the **state space**.

Definition: An MDP is a 5-tuple (S, A, T, R, γ)

S is the set of states known as the **state space**.

A is the set of actions known as the **action space**

Definition: An MDP is a 5-tuple (S, A, T, R, γ)

S is the set of states known as the state space.

A is the set of actions known as the **action space**

 $T:S\times A\to \Delta S~$ The state transition function.

Definition: An MDP is a 5-tuple (S, A, T, R, γ)

S is the set of states known as the state space.

 \boldsymbol{A} is the set of actions known as the **action space**

 $T:S\times A\to \Delta S~$ The state transition function.

 $R:S\to\mathbb{R}$ is the **reward function**.

Definition: An MDP is a 5-tuple (S, A, T, R, γ)

S is the set of states known as the state space.

A is the set of actions known as the **action space**

 $T:S\times A\to \Delta S~$ The state transition function.

 $R:S\to\mathbb{R}$ is the **reward function**.

 $\gamma \in [0,1]$ is a discount factor that we will explain later

 $T: S \times A \rightarrow \Delta S$ The state transition function.

 $T: S \times A \to \Delta S \text{ The state transition function.}$ $T\left(\underbrace{\begin{bmatrix} x_1 & y_1 & x_2 & y_2 & \dots \end{bmatrix}}_{\text{state}}, \underbrace{\begin{bmatrix} F_x & F_y & i \end{bmatrix}}_{\text{action}}\right) = \underbrace{\Delta \begin{bmatrix} x_1 & y_1 & x_2 & y_2 & \dots \end{bmatrix}}_{\text{new state}}$

$$T: S \times A \to \Delta S \text{ The state transition function.}$$
$$T\left(\underbrace{\begin{bmatrix} x_1 & y_1 & x_2 & y_2 & \dots \end{bmatrix}}_{\text{state}}, \underbrace{\begin{bmatrix} F_x & F_y & i \end{bmatrix}}_{\text{action}}\right) = \underbrace{\Delta \begin{bmatrix} x_1 & y_1 & x_2 & y_2 & \dots \end{bmatrix}}_{\text{new state}}$$

This is a **Markov** decision process because transition dynamics are **conditionally independent** of past states and actions

$$T(s_t, a_t \ | \ s_{t-1}, a_{t-1}, ..., s_0, a_0) = T(s_t, a_t)$$

$$T: S \times A \to \Delta S \text{ The state transition function.}$$
$$T\left(\underbrace{\begin{bmatrix} x_1 \ y_1 \ x_2 \ y_2 \ \cdots \end{bmatrix}}_{\text{state}}, \ \underbrace{\begin{bmatrix} F_x \ F_y \ i \end{bmatrix}}_{\text{action}}\right) = \underbrace{\Delta \begin{bmatrix} x_1 \ y_1 \ x_2 \ y_2 \ \cdots \end{bmatrix}}_{\text{new state}}$$

This is a **Markov** decision process because transition dynamics are **conditionally independent** of past states and actions

$$T(s_t, a_t \ | \ s_{t-1}, a_{t-1}, ..., s_0, a_0) = T(s_t, a_t)$$

If conditional independence is violated, the process is **not** Markov

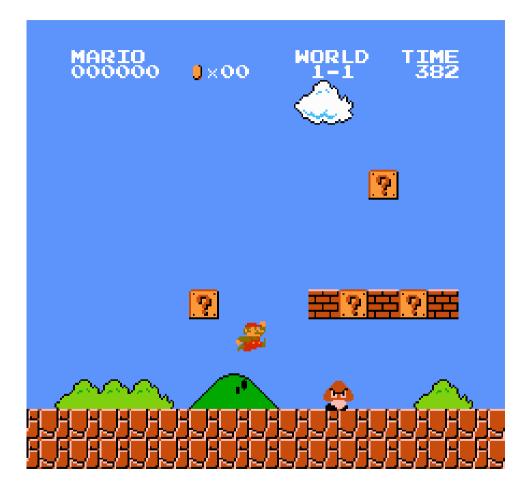
$$T: S \times A \to \Delta S \text{ The state transition function.}$$
$$T\left(\underbrace{\begin{bmatrix} x_1 \ y_1 \ x_2 \ y_2 \ \cdots \end{bmatrix}}_{\text{state}}, \ \underbrace{\begin{bmatrix} F_x \ F_y \ i \end{bmatrix}}_{\text{action}}\right) = \underbrace{\Delta \begin{bmatrix} x_1 \ y_1 \ x_2 \ y_2 \ \cdots \end{bmatrix}}_{\text{new state}}$$

This is a **Markov** decision process because transition dynamics are **conditionally independent** of past states and actions

$$T(s_t, a_t \ | \ s_{t-1}, a_{t-1}, ..., s_0, a_0) = T(s_t, a_t)$$

If conditional independence is violated, the process is **not** Markov

$$T(s_t, a_t) \neq T(s_t, a_t \mid s_{t-1}) \Longleftarrow \text{Not Markov!}$$



• State Space (S)?

- State Space (S)?
 - The position and velocity (x,y,\dot{x},\dot{y}) of Mario and Goombas
 - The score
 - Number of coins collected
 - The time remaining
 - Which question blocks have been opened
 - Which goombas have been squished

- State Space (S)?
 - The position and velocity (x,y,\dot{x},\dot{y}) of Mario and Goombas
 - The score
 - Number of coins collected
 - The time remaining
 - Which question blocks have been opened
 - Which goombas have been squished

$$S = \left\{ \mathbb{R}^4, \mathbb{R}^4, ..., \mathbb{Z}_+, \mathbb{Z}_+, \mathbb{Z}_+, \left\{ 0, 1 \right\}^k \right\}$$

• State Space (S)?

• State Space (S)?

2x256x240x3 pixels.

E.g.
$$\begin{pmatrix} \binom{255}{0} & \binom{170}{10} & \dots \\ 50 & \binom{10}{50} & \binom{255}{0} & \binom{170}{10} & \dots \\ \binom{10}{100} & \binom{200}{200} & \dots \\ \vdots & \ddots \end{pmatrix}, \begin{pmatrix} \binom{255}{0} & \binom{170}{10} & \dots \\ \binom{10}{50} & \binom{200}{200} & \dots \\ \frac{235}{35} & \binom{200}{35} & \dots \\ \vdots & \ddots \end{pmatrix}$$

• State Space (S)?

2x256x240x3 pixels.

E.g.
$$\begin{pmatrix} \binom{255}{0} & \binom{170}{10} & \dots \\ 50 & \binom{10}{50} & \binom{255}{0} & \binom{170}{10} & \dots \\ \binom{10}{100} & \binom{200}{200} & \dots \\ \vdots & \ddots \end{pmatrix}, \begin{pmatrix} \binom{255}{0} & \binom{170}{10} & \dots \\ \frac{10}{50} & \binom{200}{200} & \dots \\ \frac{200}{35} & \binom{200}{35} & \dots \\ \vdots & \ddots \end{pmatrix}$$

 $S = \mathbb{Z}^{2 \times 256 \times 240 \times 3}_{< 255}$

• Action Space (A)?

- Action Space (A)?
 - Acceleration of Mario \ddot{x}

- Action Space (A)?
 - Acceleration of Mario \ddot{x}
 - But when playing Mario, we cannot explicitly set \ddot{x}

• Action Space (A)?

- Action Space (A)?
 - The Nintendo controller has A,

B, up, down, left, right buttons

• $A = \{A, B, up, down, left, right\}$

- Action Space (A)?
 - The Nintendo controller has A, B, up, down, left, right buttons
 - $A = \{A, B, up, down, left, right\}$
 - Cannot represent pressing multiple buttons at once

- Action Space (A)?
 - The Nintendo controller has A,
 B, up, down, left, right buttons
 - $A = \{A, B, up, down, left, right\}$
 - Cannot represent pressing multiple buttons at once
 A = {0,1}⁶

- Action Space (A)?
 - The Nintendo controller has A,
 B, up, down, left, right buttons
 - $A = \{A, B, up, down, left, right\}$
 - Cannot represent pressing multiple buttons at once

$$A = \{0, 1\}^{6} \left\{ \underbrace{\{0, 1, 2, 3, 4\}}_{\emptyset, \text{direction}}, \underbrace{\{0, 1, 2, 3\}}_{\emptyset, \text{a,b,a+b}} \right\}$$

Overview

- 1. Lecture (approx. 1 hour)
 - 1. Review

2. Finish up MDPs

- 3. Agents/policies
- 4. Derive and define Q learning

2. Discussion/questions (approx. 30 mins)

• Transition Function (T)?

- Transition Function (T)?
 - T(pixel_state, right)

- Transition Function (T)?
 - $T(pixel_state, right)$
 - Move the Mario pixels right, unless a wall
 - Difficult to write down
 - Deterministic

• Transition Function (T)?

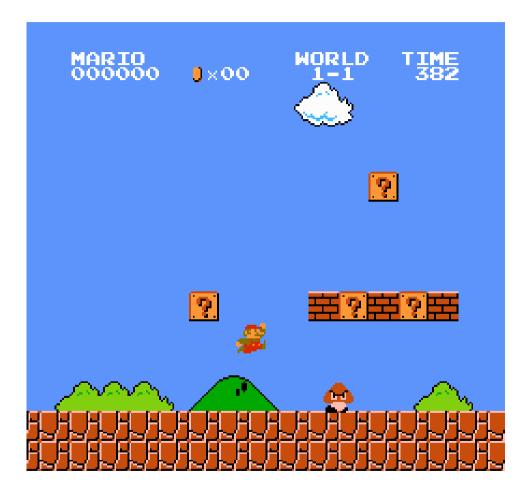
- Transition Function (T)?
 - $T(\text{pos_vel_state}, \text{acc. right})$

- Transition Function (T)?
 - $T(\text{pos_vel_state}, \text{acc. right})$
 - Changes Mario's (x, y, \dot{x}, \dot{y}) in game memory
 - Human understandable, easier to implement for game developers

Question: In Mario, a single image frame is not a Markov state. How come?

Question: In Mario, a single image frame is not a Markov state. How come?

Answer: Cannot measure velocity.



Question: Why do we need velocity in the state?

Question: Why do we need velocity in the state?

Answer: If we don't have it, Markov property is violated

 $T(\boldsymbol{s}_t, \boldsymbol{a}_t) {:}$ Mario is going up, down, left or right

 $T(s_t, a_t, s_{t-1}) {:}$ Mario is going right with velocity 1 m/s

Question: Why do we need velocity in the state?

Answer: If we don't have it, Markov property is violated

 $T(\boldsymbol{s}_t, \boldsymbol{a}_t) {:}$ Mario is going up, down, left or right

 $T(s_t, a_t, s_{t-1}) {:}$ Mario is going right with velocity 1 m/s

Not conditionally independent! $T(s_t, a_t \mid s_{t-1}, a_{t-1}, ..., s_0, a_0) \neq T(s_t, a_t)$

• **Reward** (*R*)?

- **Reward** (*R*)?
 - 1 for beating the level and 0 otherwise

- **Reward** (*R*)?
 - 1 for beating the level and 0 otherwise
 - Total score

- **Reward** (*R*)?
 - 1 for beating the level and 0 otherwise
 - Total score
 - 1 for beating the level +
 0.01 · score

- *S***√**
- A <
- *T* <
- $R\checkmark$
- γ?

Agent goal in RL is to maximize the **cumulative** reward

Agent goal in RL is to maximize the **cumulative** reward The cumulative reward is called the **return** (G)

$$G = \sum_{t=0}^{\infty} R(s_{t+1}) = \sum_{t=0}^{\infty} r_t$$

Agent goal in RL is to maximize the **cumulative** reward The cumulative reward is called the **return** (G)

$$G = \sum_{t=0}^{\infty} R(s_{t+1}) = \sum_{t=0}^{\infty} r_t$$

Note that we care about all future rewards, not just the current reward!

Not all rewards are created equal

Not all rewards are created equal

Experiment: one cookie now, or two cookies in a year?

Not all rewards are created equal

Experiment: one cookie now, or two cookies in a year?

Usually, humans and animals prefer rewards sooner.

Not all rewards are created equal

Experiment: one cookie now, or two cookies in a year?

Usually, humans and animals prefer rewards sooner.

The **discount factor** γ injects this preference into RL. Results in the **discounted return (G)**

Not all rewards are created equal

Experiment: one cookie now, or two cookies in a year?

Usually, humans and animals prefer rewards sooner.

The **discount factor** γ injects this preference into RL. Results in the **discounted return (G)**

$$\begin{split} G = \sum_{t=0}^\infty \gamma^t r_t = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \\ 0 \leq \gamma \leq 1 \end{split}$$

$$G = \sum_{t=0}^{\infty} \gamma^t r_t = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$
$$0 \le \gamma \le 1$$

With a reward of 1 at each timestep and $\gamma = 0.9$

$$G = \sum_{t=0}^{\infty} \gamma^t r_t = 1 + 0.9 + 0.81 + \ldots = \frac{1}{1 - \gamma} = 10$$

Exercise: Reinforcement learning also describes human and animal behaviors. How can you describe your behavior using reinforcement learning?

Exercise: Reinforcement learning also describes human and animal behaviors. How can you describe your behavior using reinforcement learning?

Environment: City of Cambridge

Exercise: Reinforcement learning also describes human and animal behaviors. How can you describe your behavior using reinforcement learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Exercise: Reinforcement learning also describes human and animal behaviors. How can you describe your behavior using reinforcement learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Action Space: Either go to the Cambridge Blue or go home

Exercise: Reinforcement learning also describes human and animal behaviors. How can you describe your behavior using reinforcement learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Action Space: Either go to the Cambridge Blue or go home

Reward Function: $100 \cdot \operatorname{drink}_{\operatorname{beer}} - \frac{1}{m} w_{\operatorname{rain}}$

Exercise: Reinforcement learning also describes human and animal behaviors. How can you describe your behavior using reinforcement learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Action Space: Either go to the Cambridge Blue or go home

Reward Function: $100 \cdot \operatorname{drink}_{\operatorname{beer}} - \frac{1}{m} w_{\operatorname{rain}}$

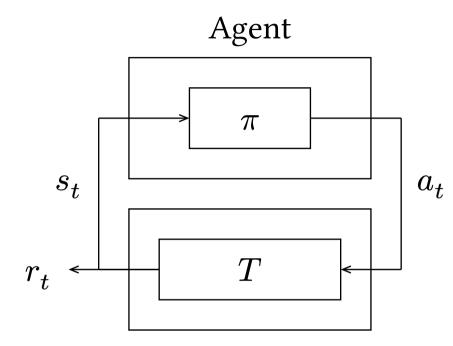
This happens internally when I decide to go to the pub after work

Agents and Policies

Deep Reinforcement Learning

University of Cambridge

Reinforcement Learning

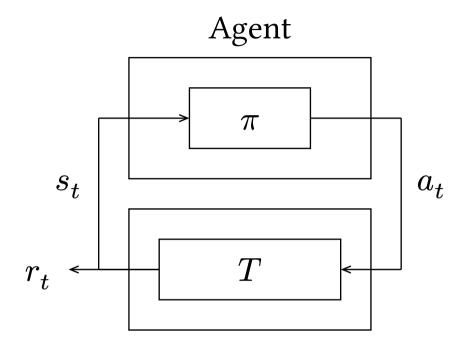


• We have defined the environment

Environment

 s_t : state, a_t : action, r_t : reward, π : policy, T: transition fn

Reinforcement Learning



- We have defined the environment
- Now let us define the agent

Environment

 s_t : state, a_t : action, r_t : reward, π : policy, T: transition fn

The agent acts following a **policy** π .

The agent acts following a **policy** π .

 $\pi: S \to \Delta A$ is a mapping from states to actions (or action probabilities), determining agent behavior in the MDP.

The agent acts following a **policy** π .

 $\pi: S \to \Delta A$ is a mapping from states to actions (or action probabilities), determining agent behavior in the MDP.

 $a_t \sim \pi(s_t)$

 $\pi(a_t \mid s_t)$

The policy that maximizes the return (*G*) is called an **optimal policy** (π_*)

The policy that maximizes the return (*G*) is called an **optimal policy** (π_*)

$$\pi_* = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t r_t$$

The policy that maximizes the return (*G*) is called an **optimal policy** (π_*)

$$\pi_* = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t r_t$$

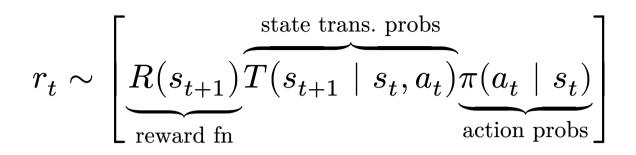
Even though the reward function is deterministic, the transitions and policy influencing it are stochastic. The optimal policy must take this uncertainty into account.

The policy that maximizes the return (*G*) is called an **optimal policy** (π_*)

$$\pi_* = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t r_t$$

Even though the reward function is deterministic, the transitions and policy influencing it are stochastic. The optimal policy must take this uncertainty into account.

$$r_t \sim \left[\underbrace{\frac{R(s_{t+1})}{T(s_{t+1} \mid s_t, a_t)}}_{\text{reward fn}} \overline{T(s_{t+1} \mid s_t, a_t)} \underbrace{\pi(a_t \mid s_t)}_{\text{action probs}}\right]$$



The **expectation** turns that distribution into a single number. This tells us what reward to expect "on average"

$$\mathbb{E}[r_t] = \int_{s_{t+1}} \int_A \underbrace{\frac{R(s_{t+1})}_{\text{reward fn}} \overline{T(s_{t+1} \mid s_t, a_t)}}_{\text{reward fn}} \underbrace{\frac{\pi(a_t \mid s_t)}{\pi(a_t \mid s_t)}}_{\text{action probs}}$$

$$\pi_* = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t r_t; \quad \mathbb{E}[r_t] = \int_{s_{t+1}} \int_A R(s_{t+1}) T(s_{t+1} \mid s_t, a_t) \pi(a_t \mid s_t)$$

In English: We need to consider the action distribution combined with our state transition distribution when computing the reward/return

$$\pi_* = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t r_t; \quad \mathbb{E}[r_t] = \int_{s_{t+1}} \int_A R(s_{t+1}) T(s_{t+1} \mid s_t, a_t) \pi(a_t \mid s_t)$$

In English: We need to consider the action distribution combined with our state transition distribution when computing the reward/return

We write the return as the **expectation** given our policy actions.

$$\pi_* = \max_{\pi} \ \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \ | \ a_t \sim \pi(s_t)\right]$$

$$\pi_* = \max_{\pi} \sum_{t=0}^{\infty} \gamma^t r_t; \quad \mathbb{E}[r_t] = \int_{s_{t+1}} \int_A R(s_{t+1}) T(s_{t+1} \mid s_t, a_t) \pi(a_t \mid s_t)$$

In English: We need to consider the action distribution combined with our state transition distribution when computing the reward/return

We write the return as the **expectation** given our policy actions.

$$\pi_* = \max_{\pi} \ \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Now our policy is optimal with respect to all the uncertainty present!

We use **algorithms** to search for the optimal policy π_*

We use **algorithms** to search for the optimal policy π_*

Virtually all algorithms are based on either **Q Learning (QL)**, **Policy Gradient (PG)**, or both

We use **algorithms** to search for the optimal policy π_*

Virtually all algorithms are based on either **Q Learning (QL)**, **Policy Gradient (PG)**, or both

Popular algorithms:

• Deep Q Networks (DQN)

We use **algorithms** to search for the optimal policy π_*

Virtually all algorithms are based on either **Q Learning (QL)**, **Policy Gradient (PG)**, or both

- Deep Q Networks (DQN)
- Proximal Policy Optimization (PPO)

We use **algorithms** to search for the optimal policy π_*

Virtually all algorithms are based on either **Q Learning (QL)**, **Policy Gradient (PG)**, or both

- Deep Q Networks (DQN)
- Proximal Policy Optimization (PPO)
- Deep Deterministic Policy Gradient (DDPG)

We use **algorithms** to search for the optimal policy π_*

Virtually all algorithms are based on either **Q Learning (QL)**, **Policy Gradient (PG)**, or both

- Deep Q Networks (DQN)
- Proximal Policy Optimization (PPO)
- Deep Deterministic Policy Gradient (DDPG)
- Twin Deep Deterministic Policy Gradient (TD3)

We use **algorithms** to search for the optimal policy π_*

Virtually all algorithms are based on either **Q Learning (QL)**, **Policy Gradient (PG)**, or both

- Deep Q Networks (DQN)
- Proximal Policy Optimization (PPO)
- Deep Deterministic Policy Gradient (DDPG)
- Twin Deep Deterministic Policy Gradient (TD3)
- Soft Actor Critic (SAC)

We use **algorithms** to search for the optimal policy π_*

Virtually all algorithms are based on either **Q Learning (QL)**, **Policy Gradient (PG)**, or both

- Deep Q Networks (DQN)
- Proximal Policy Optimization (PPO)
- Deep Deterministic Policy Gradient (DDPG)
- Twin Deep Deterministic Policy Gradient (TD3)
- Soft Actor Critic (SAC)
- Advantage Weighted Regression (AWR)

We use **algorithms** to search for the optimal policy π_*

Virtually all algorithms are based on either **Q Learning (QL)**, **Policy Gradient (PG)**, or both

- Deep Q Networks (DQN)
- Proximal Policy Optimization (PPO)
- Deep Deterministic Policy Gradient (DDPG)
- Twin Deep Deterministic Policy Gradient (TD3)
- Soft Actor Critic (SAC)
- Advantage Weighted Regression (AWR)
- Asynchronous Actor Critic (A2C)

DQN: Q learning using a deep neural network

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and **Q/V** function

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and **Q/V** function

DDPG: Q learning with continuous actions via learned argmax

DQN: Q learning using a deep neural network

- **PPO:** Policy gradient with update clipping and **Q/V** function
- DDPG: Q learning with continuous actions via learned argmaxTD3: DDPG with action noise and a double Q trick

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and **Q/V** function

DDPG: Q learning with continuous actions via learned argmaxTD3: DDPG with action noise and a double Q trick

SAC: TD3 with entropy bonuses

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and **Q/V** function

DDPG: Q learning with continuous actions via learned argmax **TD3:** DDPG with action noise and a double **Q** trick

SAC: TD3 with entropy bonuses

AWR: Offline policy gradient with **Q**/**V** function

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and **Q/V** function

DDPG: Q learning with continuous actions via learned argmax **TD3:** DDPG with action noise and a double **Q** trick

SAC: TD3 with entropy bonuses

AWR: Offline policy gradient with **Q/V** function

A2C: Policy gradient with Q/V function

- 1. Lecture (approx. 1 hour)
 - 1. Review
 - 2. Finish up MDPs
 - 3. Agents/policies
 - 4. Derive and define Q learning
- 2. Discussion/questions (approx. 30 mins)

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as discussed, many algorithms add tricks to Q learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as discussed, many algorithms add tricks to Q learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as discussed, many algorithms add tricks to Q learning

The Plan:

1. Derive the value function V

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as discussed, many algorithms add tricks to Q learning

- 1. Derive the value function V
- 2. Derive Q function from V

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as discussed, many algorithms add tricks to Q learning

- 1. Derive the value function V
- 2. Derive Q function from V
- 3. Figure out a behavior policy using ${\cal Q}$

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as discussed, many algorithms add tricks to Q learning

- 1. Derive the value function V
- 2. Derive Q function from V
- 3. Figure out a behavior policy using ${\cal Q}$
- 4. Learn to train Q

Recall the discounted return of a specific policy π

Recall the discounted return of a specific policy π

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t ~|~ a_t \sim \pi(s_t)\right]$$

Recall the discounted return of a specific policy π

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

In English: At each timestep, we take an action $a_t \sim \pi(s_t)$

Recall the discounted return of a specific policy π

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

In English: At each timestep, we take an action $a_t \sim \pi(s_t)$ follow the state transition function $s_{t+1} \sim T(s_t, a_t)$

Recall the discounted return of a specific policy π

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

In English: At each timestep, we take an action $a_t \sim \pi(s_t)$

follow the state transition function $s_{t+1} \sim T(s_t, a_t)$

and get a reward $r_t = R(s_{t+1})$

$$G_{\pi} = \mathbb{E} \Big[\sum_{t=0}^{\infty} \gamma^t r_t ~|~ a_t \sim \pi(s_t) \Big]$$

$$G_{\pi} = \mathbb{E} \Big[\sum_{t=0}^{\infty} \gamma^t r_t ~|~ a_t \sim \pi(s_t) \Big]$$

Rather than start the return from a given timestep, what if we defined it from a given state?

$$G_{\pi} = \mathbb{E} \big[\sum_{t=0}^{\infty} \gamma^t r_t ~|~ a_t \sim \pi(s_t) \big]$$

Rather than start the return from a given timestep, what if we defined it from a given state?

We call this the Value Function (V_{π}) $V_{\pi}: S \to \mathbb{R}$

$$G_{\pi} = \mathbb{E} \big[\sum_{t=0}^{\infty} \gamma^t r_t ~|~ a_t \sim \pi(s_t) \big]$$

Rather than start the return from a given timestep, what if we defined it from a given state?

We call this the Value Function (V_{π}) $V_{\pi}: S \to \mathbb{R}$

$$V_{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

$$G_{\pi} = \mathbb{E} \big[\sum_{t=0}^{\infty} \gamma^t r_t ~|~ a_t \sim \pi(s_t) \big]$$

Rather than start the return from a given timestep, what if we defined it from a given state?

We call this the Value Function (V_{π}) $V_{\pi}: S \to \mathbb{R}$

$$V_{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Measures the value of a state (how good is it to be in this state?), for a given policy π

Step 2: Deriving Q

The Plan:

- 1. Derive the value function ${\cal V}$
- 2. Derive Q function from V
- 3. Figure out a behavior policy using ${\cal Q}$
- 4. Learn to train Q

$$V_{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t ~|~ a_t \sim \pi(s_t)\right]$$

$$V_{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t ~|~ a_t \sim \pi(s_t)\right]$$

Let's go one step further. What if the value function were conditioned on the first action?

$$V_{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Let's go one step further. What if the value function were conditioned on the first action?

First, let's factor out the upcoming reward

$$V_{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Let's go one step further. What if the value function were conditioned on the first action?

First, let's factor out the upcoming reward

$$V_{\pi}(s_0) = \mathbb{E}[r_0 \mid a_0 \sim \pi(s_0)] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

$$V_{\pi}(s_0) = \mathbb{E}[r_0 \mid a_0 \sim \pi(s_0)] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Now we can rewrite V_π as a function of the action, independent of π

$$V_{\pi}(s_0) = \mathbb{E}[r_0 \mid a_0 \sim \pi(s_0)] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Now we can rewrite V_π as a function of the action, independent of π

$$V_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

$$V_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

$$V_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

When *V* depends on a specific action, we call it the **Q** function:

$$S \times A \to \mathbb{R}$$

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

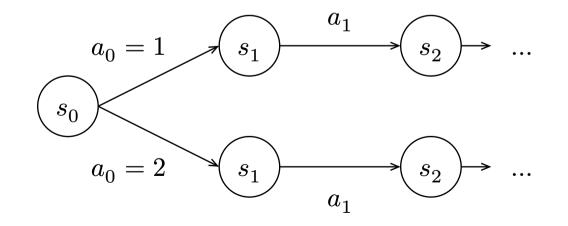
$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

The Q function might appear simple but it is very powerful

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

The Q function might appear simple but it is very powerful

 a_0 affects your next state s_1 , which affects the future



$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Example: You have MPhil offers from Cambridge and Oxford

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Example: You have MPhil offers from Cambridge and Oxford

$$a_0 = \{ \text{Oxford}, \text{Cambridge} \}$$

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Example: You have MPhil offers from Cambridge and Oxford

$$a_0 = \{ \text{Oxford}, \text{Cambridge} \}$$

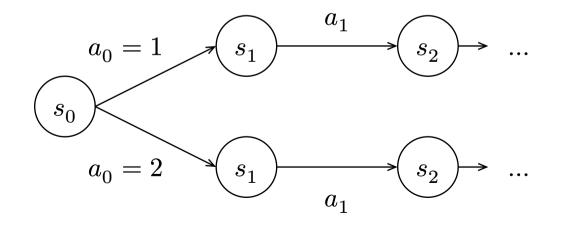
Q function gives you a number denoting how much better your life will be for attending Cambridge (based on your behavior π). Takes into account reward (based on income, friend group, experiences, etc).

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

$$\begin{split} Q(s_0, \text{Cambridge}) &= f(\text{friends} + \text{experiences} + \text{income}) = 1200\\ Q(s_0, \text{Oxford}) &= f(\text{friends} + \text{experiences} + \text{income}) = 900 \end{split}$$

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

$$\begin{split} Q(s_0, \text{Cambridge}) &= f(\text{friends} + \text{experiences} + \text{income}) = 1200\\ Q(s_0, \text{Oxford}) &= f(\text{friends} + \text{experiences} + \text{income}) = 900 \end{split}$$



The Plan:

- 1. Derive the value function ${\cal V}$
- 2. Derive Q function from V
- 3. Figure out a behavior policy using Q
- 4. Learn to train Q

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

We know the Q function for a specific policy π , but how does this help us learn a policy?

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

We know the Q function for a specific policy π , but how does this help us learn a policy?

What would the Q function for the optimal policy π_* look like? Just add * to π

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

We know the Q function for a specific policy π , but how does this help us learn a policy?

What would the Q function for the optimal policy π_* look like? Just add * to π

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi_*(s_t)\right]$$

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^\infty \gamma^t r_t \mid a_t \sim \pi_*(s_t)\right]$$

Richard Bellman proved that a greedy policy is optimal (see the Bellman Equation)

$$\pi_*(s) = \operatorname*{argmax}_{a \in A} Q_*(s,a)$$

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi_*(s_t)\right]$$

Richard Bellman proved that a greedy policy is optimal (see the Bellman Equation)

$$\pi_*(s) = \operatorname*{argmax}_{a \in A} Q_*(s,a)$$

In English: Just take things one step at a time. Compute Q value for all possible actions and pick the action with the biggest Q value. Repeat at each timestep.

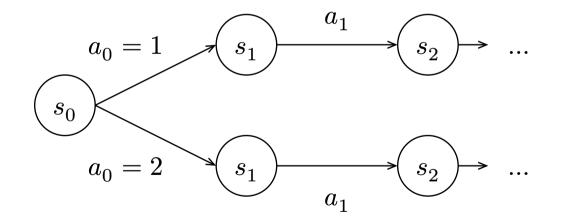
$$\pi_*(s) = \operatorname*{argmax}_{a \in A} Q_*(s,a)$$

$$\pi_*(s) = \operatorname*{argmax}_{a \in A} Q_*(s,a)$$

$$\label{eq:Q_solution} \begin{split} Q_*(s_0, \text{Cambridge}) &= f(\text{friends} + \text{experiences} + \text{income}) = 1200 \\ Q_*(s_0, \text{Oxford}) &= f(\text{friends} + \text{experiences} + \text{income}) = 900 \end{split}$$

$$\pi_*(s) = \operatorname*{argmax}_{a \in A} Q_*(s,a)$$

 $m{Q}_*(s_0, {f Cambridge}) = f({f friends} + {f experiences} + {f income}) = 1200$ $m{Q}_*(s_0, {f Oxford}) = f({f friends} + {f experiences} + {f income}) = 900$



$$\pi_*(s) = \operatorname*{argmax}_{a \in A} Q_*(s,a)$$

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^\infty \gamma^t r_t \mid a_t \sim \pi_*(s_t)\right]$$

$$\pi_*(s) = \operatorname*{argmax}_{a \in A} Q_*(s,a)$$

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^\infty \gamma^t r_t \mid a_t \sim \pi_*(s_t)\right]$$

We can rewrite Q_* using our new π_*

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_t, a)\right]$$

$$\pi_*(s) = \operatorname*{argmax}_{a \in A} Q_*(s,a)$$

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^\infty \gamma^t r_t \mid a_t \sim \pi_*(s_t)\right]$$

We can rewrite Q_* using our new π_*

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_t, a)\right]$$

Sidenote: OpenAI's leaked AI breakthrough named Q_* is likely related to this!

Step 4: Train Q

The Plan:

- 1. Derive the value function V
- 2. Derive Q function from V
- 3. Figure out a behavior policy using ${\cal Q}$
- 4. Learn to train Q

Step 4: Train Q

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_t, a)\right]$$

Step 4: Train Q

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{\substack{t=1 \\ \text{Very annoying}}}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q(s_t, a)\right]$$

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{\substack{t=1 \\ \text{Very annoying}}}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q(s_t, a)\right]$$

After infinite time, we will have one datapoint for training. Can we get rid of the infinite sum?

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_t, a)\right]$$

Factoring out the first element worked before, let's try it again

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_t, a)\right]$$

Factoring out the first element worked before, let's try it again

$$\begin{aligned} Q_*(s_0, a_0) &= \mathbb{E}[r_0 \mid a_0] + \\ \gamma \cdot \mathbb{E}\left[r_1 \mid a_1 = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_0, a)\right] + \mathbb{E}\left[\sum_{t=2}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_t, a)\right] \end{aligned}$$

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_t, a)\right]$$

Factoring out the first element worked before, let's try it again

$$\begin{split} Q_*(s_0, a_0) &= \mathbb{E}[r_0 \mid a_0] + \\ \gamma \cdot \mathbb{E}\left[r_1 \mid a_1 = \operatorname*{argmax}_{\{a \in A\}} Q(s_1, a)\right] + \mathbb{E}\left[\sum_{t=2}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_t, a)\right] \end{split}$$



$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_t, a)\right]$$

Factoring out the first element worked before, let's try it again

$$\begin{aligned} Q_*(s_0, a_0) &= \mathbb{E}[r_0 \mid a_0] + \\ \gamma \cdot \mathbb{E}\left[r_1 \mid a_1 = \operatorname*{argmax}_{\{a \in A\}} Q(s_1, a)\right] + \mathbb{E}\left[\sum_{t=2}^{\infty} \gamma^t r_t \mid a_t = \operatorname*{argmax}_{\{a \in A\}} Q_*(s_t, a)\right] \end{aligned}$$

It is the Q function starting at s_1 , a recursive formulation!

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \gamma \cdot \max_{\{a \in A\}} Q_*(s_1, a)$$

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \gamma \cdot \max_{\{a \in A\}} Q_*(s_1, a)$$

$$Q_*(s_0,a_0) = \mathbb{E}[r_0 \mid a_0] + \gamma \cdot \max_{\{a \in A\}} Q_*(s_1,a)$$

Often written more simply as

$$Q(s,a) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a')$$

$$Q_*(s_0, a_0) = \mathbb{E}[r_0 ~|~ a_0] + \gamma \cdot \max_{\{a \in A\}} Q_*(s_1, a)$$

Often written more simply as

$$Q(s,a) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a')$$

With the infinite sum gone, this is much easier to compute

Summary

We defined the ${\cal Q}$ function

$$Q(s,a,\theta) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a',\theta)$$

Summary

We defined the ${\cal Q}$ function

$$Q(s, a, \theta) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s', a', \theta)$$

We defined the optimal policy given the ${\cal Q}$ function

$$\pi(s) = \operatorname*{argmax}_{a \in A} Q(s, a, \theta)$$

Summary

We defined the ${\cal Q}$ function

$$Q(s, a, \theta) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s', a', \theta)$$

We defined the optimal policy given the ${\cal Q}$ function

$$\pi(s) = \operatorname*{argmax}_{a \in A} Q(s, a, \theta)$$

We defined the Q function training objective

$$\min_{\boldsymbol{\theta}} \left(Q(s, a, \boldsymbol{\theta}) - \left(r + \gamma \cdot \operatorname*{argmax}_{\{a' \in A\}} Q(s', a', \boldsymbol{\theta}) \right) \right)^2$$

Homework: Read *Human-level control through deep reinforcement learning*, Mnih et. al

Homework: Read *Human-level control through deep reinforcement learning*, Mnih et. al

They go from our Q learning definition to an agent that can beat humans at most Atari games

Homework: Read *Human-level control through deep reinforcement learning*, Mnih et. al

They go from our Q learning definition to an agent that can beat humans at most Atari games

This is what your miniproject is based on

Homework: Read *Human-level control through deep reinforcement learning*, Mnih et. al

They go from our Q learning definition to an agent that can beat humans at most Atari games

This is what your miniproject is based on

Next Time: We will focus on a practical implementation of Deep Q Learning

- 1. Go around and introduce everyone
 - Name and 2-3 sentences why they chose this module

- 1. Go around and introduce everyone
 - Name and 2-3 sentences why they chose this module
- 2. What "works" in RL?
 - Why aren't there robots delivering me lunch and folding my laundry?
- 3. ML/RL was supposed to free us from menial labor and give us time to pursue our passions
 - Now thousands of people provide thumbs up/thumbs down for ChatGPT completions 40 hours a week, while GPT-based models produce art, music, creative writing, etc

- 1. Go around and introduce everyone
 - Name and 2-3 sentences why they chose this module
- 2. What "works" in RL?
 - Why aren't there robots delivering me lunch and folding my laundry?
- 3. ML/RL was supposed to free us from menial labor and give us time to pursue our passions
 - Now thousands of people provide thumbs up/thumbs down for ChatGPT completions 40 hours a week, while GPT-based models produce art, music, creative writing, etc
- 4. What are you most excited to learn about next?

- 1. Go around and introduce everyone
 - Name and 2-3 sentences why they chose this module
- 2. What "works" in RL?
 - Why aren't there robots delivering me lunch and folding my laundry?
- 3. ML/RL was supposed to free us from menial labor and give us time to pursue our passions
 - Now thousands of people provide thumbs up/thumbs down for ChatGPT completions 40 hours a week, while GPT-based models produce art, music, creative writing, etc
- 4. What are you most excited to learn about next?