
Markov Decision Processes
Deep Reinforcement Learning

University of Cambridge

Overview

1. Lecture (approx. 1 hour)
1. Review
2. Finish up MDPs
3. Agents/policies
4. Derive and define Q learning

2. Discussion/questions (approx. 30 mins)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 2 / 53

Overview

1. Lecture (approx. 1 hour)
1. Review
2. Finish up MDPs
3. Agents/policies
4. Derive and define Q learning

2. Discussion/questions (approx. 30 mins)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 3 / 53

Review

Last time we talked about MDPs

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 4 / 53

Review

Last time we talked about MDPs

Designed state and action spaces for Mario

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 4 / 53

Review

Last time we talked about MDPs

Designed state and action spaces for Mario

Let’s briefly review the MDP

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 4 / 53

Markov Decision Processes

Definition: An MDP is a 5-tuple (𝑆, 𝐴, 𝑇 , 𝑅, 𝛾)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 5 / 53

Markov Decision Processes

Definition: An MDP is a 5-tuple (𝑆, 𝐴, 𝑇 , 𝑅, 𝛾)

𝑆 is the set of states known as the state space.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 5 / 53

Markov Decision Processes

Definition: An MDP is a 5-tuple (𝑆, 𝐴, 𝑇 , 𝑅, 𝛾)

𝑆 is the set of states known as the state space.

𝐴 is the set of actions known as the action space

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 5 / 53

Markov Decision Processes

Definition: An MDP is a 5-tuple (𝑆, 𝐴, 𝑇 , 𝑅, 𝛾)

𝑆 is the set of states known as the state space.

𝐴 is the set of actions known as the action space

𝑇 : 𝑆 × 𝐴 → Δ𝑆 The state transition function.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 5 / 53

Markov Decision Processes

Definition: An MDP is a 5-tuple (𝑆, 𝐴, 𝑇 , 𝑅, 𝛾)

𝑆 is the set of states known as the state space.

𝐴 is the set of actions known as the action space

𝑇 : 𝑆 × 𝐴 → Δ𝑆 The state transition function.

𝑅 : 𝑆 → ℝ is the reward function.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 5 / 53

Markov Decision Processes

Definition: An MDP is a 5-tuple (𝑆, 𝐴, 𝑇 , 𝑅, 𝛾)

𝑆 is the set of states known as the state space.

𝐴 is the set of actions known as the action space

𝑇 : 𝑆 × 𝐴 → Δ𝑆 The state transition function.

𝑅 : 𝑆 → ℝ is the reward function.

𝛾 ∈ [0, 1] is a discount factor that we will explain later

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 5 / 53

State Transition Function

𝑇 : 𝑆 × 𝐴 → Δ𝑆 The state transition function.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 6 / 53

State Transition Function

𝑇 : 𝑆 × 𝐴 → Δ𝑆 The state transition function.

𝑇
⎝
⎜⎜
⎛[𝑥1 𝑦1 𝑥2 𝑦2 …]⏟⏟⏟⏟⏟⏟⏟

state

, [𝐹𝑥 𝐹𝑦 𝑖]⏟
action ⎠

⎟⎟
⎞ = Δ[𝑥1 𝑦1 𝑥2 𝑦2 …]⏟⏟⏟⏟⏟⏟⏟

new state

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 6 / 53

State Transition Function

𝑇 : 𝑆 × 𝐴 → Δ𝑆 The state transition function.

𝑇
⎝
⎜⎜
⎛[𝑥1 𝑦1 𝑥2 𝑦2 …]⏟⏟⏟⏟⏟⏟⏟

state

, [𝐹𝑥 𝐹𝑦 𝑖]⏟
action ⎠

⎟⎟
⎞ = Δ[𝑥1 𝑦1 𝑥2 𝑦2 …]⏟⏟⏟⏟⏟⏟⏟

new state

This is a Markov decision process because transition dynamics are
conditionally independent of past states and actions

𝑇 (𝑠𝑡, 𝑎𝑡 | 𝑠𝑡−1, 𝑎𝑡−1, …, 𝑠0, 𝑎0) = 𝑇 (𝑠𝑡, 𝑎𝑡)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 6 / 53

State Transition Function

𝑇 : 𝑆 × 𝐴 → Δ𝑆 The state transition function.

𝑇
⎝
⎜⎜
⎛[𝑥1 𝑦1 𝑥2 𝑦2 …]⏟⏟⏟⏟⏟⏟⏟

state

, [𝐹𝑥 𝐹𝑦 𝑖]⏟
action ⎠

⎟⎟
⎞ = Δ[𝑥1 𝑦1 𝑥2 𝑦2 …]⏟⏟⏟⏟⏟⏟⏟

new state

This is a Markov decision process because transition dynamics are
conditionally independent of past states and actions

𝑇 (𝑠𝑡, 𝑎𝑡 | 𝑠𝑡−1, 𝑎𝑡−1, …, 𝑠0, 𝑎0) = 𝑇 (𝑠𝑡, 𝑎𝑡)

If conditional independence is violated, the process is not Markov

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 6 / 53

State Transition Function

𝑇 : 𝑆 × 𝐴 → Δ𝑆 The state transition function.

𝑇
⎝
⎜⎜
⎛[𝑥1 𝑦1 𝑥2 𝑦2 …]⏟⏟⏟⏟⏟⏟⏟

state

, [𝐹𝑥 𝐹𝑦 𝑖]⏟
action ⎠

⎟⎟
⎞ = Δ[𝑥1 𝑦1 𝑥2 𝑦2 …]⏟⏟⏟⏟⏟⏟⏟

new state

This is a Markov decision process because transition dynamics are
conditionally independent of past states and actions

𝑇 (𝑠𝑡, 𝑎𝑡 | 𝑠𝑡−1, 𝑎𝑡−1, …, 𝑠0, 𝑎0) = 𝑇 (𝑠𝑡, 𝑎𝑡)

If conditional independence is violated, the process is not Markov

𝑇 (𝑠𝑡, 𝑎𝑡) ≠ 𝑇 (𝑠𝑡, 𝑎𝑡 | 𝑠𝑡−1) ⟸ Not Markov!

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 6 / 53

Super Mario Bros
• State Space (𝑺)?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 7 / 53

Super Mario Bros
• State Space (𝑺)?

• The position and velocity
(𝑥, 𝑦, ̇𝑥, ̇𝑦) of Mario and Goombas

• The score
• Number of coins collected
• The time remaining
• Which question blocks have been

opened
• Which goombas have been

squished

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 7 / 53

Super Mario Bros
• State Space (𝑺)?

• The position and velocity
(𝑥, 𝑦, ̇𝑥, ̇𝑦) of Mario and Goombas

• The score
• Number of coins collected
• The time remaining
• Which question blocks have been

opened
• Which goombas have been

squished

𝑆 = {ℝ4, ℝ4, …, ℤ+, ℤ+, ℤ+, {0, 1}𝑘}

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 7 / 53

Super Mario Bros

• State Space (𝑺)?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 8 / 53

Super Mario Bros

• State Space (𝑺)?

2x256x240x3 pixels.

E.g.

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛(

255
0
0

)

(
10
100
235

)

⋮

(
170
10
50

)

(
200
200
35

)

…

…

⋱⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

,

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛(

255
0
0

)

(
10
100
235

)

⋮

(
170
10
50

)

(
200
200
35

)

…

…

⋱⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 8 / 53

Super Mario Bros

• State Space (𝑺)?

2x256x240x3 pixels.

E.g.

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛(

255
0
0

)

(
10
100
235

)

⋮

(
170
10
50

)

(
200
200
35

)

…

…

⋱⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

,

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛(

255
0
0

)

(
10
100
235

)

⋮

(
170
10
50

)

(
200
200
35

)

…

…

⋱⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

𝑆 = ℤ2×256×240×3
<255

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 8 / 53

Super Mario Bros

• Action Space (𝑨)?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 9 / 53

Super Mario Bros

• Action Space (𝑨)?
• Acceleration of Mario �̈�

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 9 / 53

Super Mario Bros

• Action Space (𝑨)?
• Acceleration of Mario �̈�

• But when playing Mario, we
cannot explicitly set �̈�

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 9 / 53

Super Mario Bros

• Action Space (𝑨)?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 10 / 53

Super Mario Bros

• Action Space (𝑨)?
• The Nintendo controller has A,

B, up, down, left, right buttons
• 𝐴 = {𝐴, 𝐵, up, down, left, right}

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 10 / 53

Super Mario Bros

• Action Space (𝑨)?
• The Nintendo controller has A,

B, up, down, left, right buttons
• 𝐴 = {𝐴, 𝐵, up, down, left, right}

• Cannot represent pressing
multiple buttons at once

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 10 / 53

Super Mario Bros

• Action Space (𝑨)?
• The Nintendo controller has A,

B, up, down, left, right buttons
• 𝐴 = {𝐴, 𝐵, up, down, left, right}

• Cannot represent pressing
multiple buttons at once

• 𝐴 = {0, 1}6

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 10 / 53

Super Mario Bros

• Action Space (𝑨)?
• The Nintendo controller has A,

B, up, down, left, right buttons
• 𝐴 = {𝐴, 𝐵, up, down, left, right}

• Cannot represent pressing
multiple buttons at once

• 𝐴 = {0, 1}6

•

⎩{
⎨
{⎧

{0, 1, 2, 3, 4}⏟⏟⏟⏟⏟
∅,direction

, {0, 1, 2, 3}⏟⏟⏟⏟⏟
∅,a,b,a+b ⎭}

⎬
}⎫

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 10 / 53

Overview

1. Lecture (approx. 1 hour)
1. Review
2. Finish up MDPs
3. Agents/policies
4. Derive and define Q learning

2. Discussion/questions (approx. 30 mins)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 11 / 53

Super Mario Bros

• Transition Function (𝑻)?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 12 / 53

Super Mario Bros

• Transition Function (𝑻)?
• 𝑇 (pixel_state, right)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 12 / 53

Super Mario Bros

• Transition Function (𝑻)?
• 𝑇 (pixel_state, right)

• Move the Mario pixels right,
unless a wall

• Difficult to write down
• Deterministic

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 12 / 53

Super Mario Bros

• Transition Function (𝑻)?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 13 / 53

Super Mario Bros

• Transition Function (𝑻)?
• 𝑇 (pos_vel_state, acc. right)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 13 / 53

Super Mario Bros

• Transition Function (𝑻)?
• 𝑇 (pos_vel_state, acc. right)

• Changes Mario’s (𝑥, 𝑦, ̇𝑥, ̇𝑦)
in game memory

• Human understandable,
easier to implement for
game developers

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 13 / 53

Markov States

Question: In Mario, a single
image frame is not a Markov state.
How come?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 14 / 53

Markov States

Question: In Mario, a single
image frame is not a Markov state.
How come?

Answer: Cannot measure velocity.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 14 / 53

Markov States
Question: Why do we need velocity in
the state?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 15 / 53

Markov States
Question: Why do we need velocity in
the state?

Answer: If we don’t have it, Markov
property is violated

𝑇 (𝑠𝑡, 𝑎𝑡): Mario is going up, down, left
or right

𝑇 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1): Mario is going right
with velocity 1 m/s

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 15 / 53

Markov States
Question: Why do we need velocity in
the state?

Answer: If we don’t have it, Markov
property is violated

𝑇 (𝑠𝑡, 𝑎𝑡): Mario is going up, down, left
or right

𝑇 (𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1): Mario is going right
with velocity 1 m/s

Not conditionally independent!
𝑇 (𝑠𝑡, 𝑎𝑡 | 𝑠𝑡−1, 𝑎𝑡−1, …, 𝑠0, 𝑎0) ≠ 𝑇 (𝑠𝑡, 𝑎𝑡)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 15 / 53

Super Mario Bros

• Reward (𝑹)?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 16 / 53

Super Mario Bros

• Reward (𝑹)?
• 1 for beating the level and 0

otherwise

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 16 / 53

Super Mario Bros

• Reward (𝑹)?
• 1 for beating the level and 0

otherwise
• Total score

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 16 / 53

Super Mario Bros

• Reward (𝑹)?
• 1 for beating the level and 0

otherwise
• Total score
• 1 for beating the level +

0.01 ⋅ score

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 16 / 53

Markov Decision Processes

• 𝑆✓
• 𝐴✓
• 𝑇✓
• 𝑅✓
• 𝛾?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 17 / 53

Markov Decision Processes

Agent goal in RL is to maximize the cumulative reward

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 18 / 53

Markov Decision Processes

Agent goal in RL is to maximize the cumulative reward

The cumulative reward is called the return (𝑮)

𝐺 = ∑
∞

𝑡=0
𝑅(𝑠𝑡+1) = ∑

∞

𝑡=0
𝑟𝑡

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 18 / 53

Markov Decision Processes

Agent goal in RL is to maximize the cumulative reward

The cumulative reward is called the return (𝑮)

𝐺 = ∑
∞

𝑡=0
𝑅(𝑠𝑡+1) = ∑

∞

𝑡=0
𝑟𝑡

Note that we care about all future rewards, not just the current reward!

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 18 / 53

Markov Decision Processes

Not all rewards are created equal

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 19 / 53

Markov Decision Processes

Not all rewards are created equal

Experiment: one cookie now, or two cookies in a year?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 19 / 53

Markov Decision Processes

Not all rewards are created equal

Experiment: one cookie now, or two cookies in a year?

Usually, humans and animals prefer rewards sooner.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 19 / 53

Markov Decision Processes

Not all rewards are created equal

Experiment: one cookie now, or two cookies in a year?

Usually, humans and animals prefer rewards sooner.

The discount factor 𝜸 injects this preference into RL. Results in the
discounted return (G)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 19 / 53

Markov Decision Processes

Not all rewards are created equal

Experiment: one cookie now, or two cookies in a year?

Usually, humans and animals prefer rewards sooner.

The discount factor 𝜸 injects this preference into RL. Results in the
discounted return (G)

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 = 𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 + …

0 ≤ 𝛾 ≤ 1

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 19 / 53

Markov Decision Processes

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 = 𝑟0 + 𝛾𝑟1 + 𝛾2𝑟2 + …

0 ≤ 𝛾 ≤ 1

With a reward of 1 at each timestep and 𝛾 = 0.9

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 = 1 + 0.9 + 0.81 + … =

1
1 − 𝛾

= 10

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 20 / 53

MDP Wrap Up

Exercise: Reinforcement learning also describes human and animal
behaviors. How can you describe your behavior using reinforcement
learning?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 21 / 53

MDP Wrap Up

Exercise: Reinforcement learning also describes human and animal
behaviors. How can you describe your behavior using reinforcement
learning?

Environment: City of Cambridge

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 21 / 53

MDP Wrap Up

Exercise: Reinforcement learning also describes human and animal
behaviors. How can you describe your behavior using reinforcement
learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 21 / 53

MDP Wrap Up

Exercise: Reinforcement learning also describes human and animal
behaviors. How can you describe your behavior using reinforcement
learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Action Space: Either go to the Cambridge Blue or go home

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 21 / 53

MDP Wrap Up

Exercise: Reinforcement learning also describes human and animal
behaviors. How can you describe your behavior using reinforcement
learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Action Space: Either go to the Cambridge Blue or go home

Reward Function: 100 ⋅ drinkbeer − 1
𝑚𝑤rain

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 21 / 53

MDP Wrap Up

Exercise: Reinforcement learning also describes human and animal
behaviors. How can you describe your behavior using reinforcement
learning?

Environment: City of Cambridge

State: My position, motivation, weather, and current activity

Action Space: Either go to the Cambridge Blue or go home

Reward Function: 100 ⋅ drinkbeer − 1
𝑚𝑤rain

This happens internally when I decide to go to the pub after work

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 21 / 53

Agents and Policies
Deep Reinforcement Learning

University of Cambridge

Reinforcement Learning

𝜋

Agent

𝑇

Environment

𝑠𝑡

𝑟𝑡

𝑎𝑡

𝑠𝑡: state, 𝑎𝑡: action,
𝑟𝑡: reward, 𝜋: policy,
𝑇 : transition fn

• We have defined the
environment

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 23 / 53

Reinforcement Learning

𝜋

Agent

𝑇

Environment

𝑠𝑡

𝑟𝑡

𝑎𝑡

𝑠𝑡: state, 𝑎𝑡: action,
𝑟𝑡: reward, 𝜋: policy,
𝑇 : transition fn

• We have defined the
environment

• Now let us define the agent

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 23 / 53

Policies

The agent acts following a policy 𝜋.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 24 / 53

Policies

The agent acts following a policy 𝜋.

𝜋 : 𝑆 → Δ𝐴 is a mapping from states to actions (or action
probabilities), determining agent behavior in the MDP.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 24 / 53

Policies

The agent acts following a policy 𝜋.

𝜋 : 𝑆 → Δ𝐴 is a mapping from states to actions (or action
probabilities), determining agent behavior in the MDP.

𝑎𝑡 ∼ 𝜋(𝑠𝑡)

𝜋(𝑎𝑡 | 𝑠𝑡)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 24 / 53

Policies

The policy that maximizes the return (𝐺) is called an optimal policy (𝝅∗)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 25 / 53

Policies

The policy that maximizes the return (𝐺) is called an optimal policy (𝝅∗)

𝜋∗ = max
𝜋

∑
∞

𝑡=0
𝛾𝑡𝑟𝑡

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 25 / 53

Policies

The policy that maximizes the return (𝐺) is called an optimal policy (𝝅∗)

𝜋∗ = max
𝜋

∑
∞

𝑡=0
𝛾𝑡𝑟𝑡

Even though the reward function is deterministic, the transitions and
policy influencing it are stochastic. The optimal policy must take this
uncertainty into account.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 25 / 53

Policies

The policy that maximizes the return (𝐺) is called an optimal policy (𝝅∗)

𝜋∗ = max
𝜋

∑
∞

𝑡=0
𝛾𝑡𝑟𝑡

Even though the reward function is deterministic, the transitions and
policy influencing it are stochastic. The optimal policy must take this
uncertainty into account.

𝑟𝑡 ∼
⎣
⎢
⎡𝑅(𝑠𝑡+1)⏟

reward fn

state trans. probs
⏞⏞⏞⏞⏞⏞⏞𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)⏟⏟⏟⏟⏟

action probs⎦
⎥
⎤

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 25 / 53

Policies

𝑟𝑡 ∼
⎣
⎢
⎡𝑅(𝑠𝑡+1)⏟

reward fn

state trans. probs
⏞⏞⏞⏞⏞⏞⏞𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)⏟⏟⏟⏟⏟

action probs⎦
⎥
⎤

The expectation turns that distribution into a single number. This tells
us what reward to expect “on average”

𝔼[𝑟𝑡] = ∫
𝑠𝑡+1

∫
𝐴

𝑅(𝑠𝑡+1)⏟
reward fn

state trans. probs
⏞⏞⏞⏞⏞⏞⏞𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)⏟⏟⏟⏟⏟

action probs

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 26 / 53

Policies

𝜋∗ = max
𝜋

∑
∞

𝑡=0
𝛾𝑡𝑟𝑡; 𝔼[𝑟𝑡] = ∫

𝑠𝑡+1

∫
𝐴

𝑅(𝑠𝑡+1)𝑇 (𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)

In English: We need to consider the action distribution combined with
our state transition distribution when computing the reward/return

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 27 / 53

Policies

𝜋∗ = max
𝜋

∑
∞

𝑡=0
𝛾𝑡𝑟𝑡; 𝔼[𝑟𝑡] = ∫

𝑠𝑡+1

∫
𝐴

𝑅(𝑠𝑡+1)𝑇 (𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)

In English: We need to consider the action distribution combined with
our state transition distribution when computing the reward/return

We write the return as the expectation given our policy actions.

𝜋∗ = max
𝜋

 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 27 / 53

Policies

𝜋∗ = max
𝜋

∑
∞

𝑡=0
𝛾𝑡𝑟𝑡; 𝔼[𝑟𝑡] = ∫

𝑠𝑡+1

∫
𝐴

𝑅(𝑠𝑡+1)𝑇 (𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)

In English: We need to consider the action distribution combined with
our state transition distribution when computing the reward/return

We write the return as the expectation given our policy actions.

𝜋∗ = max
𝜋

 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Now our policy is optimal with respect to all the uncertainty present!

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 27 / 53

Algorithms

We use algorithms to search for the optimal policy 𝜋∗

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 28 / 53

Algorithms

We use algorithms to search for the optimal policy 𝜋∗

Virtually all algorithms are based on either Q Learning (QL), Policy
Gradient (PG), or both

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 28 / 53

Algorithms

We use algorithms to search for the optimal policy 𝜋∗

Virtually all algorithms are based on either Q Learning (QL), Policy
Gradient (PG), or both

Popular algorithms:
• Deep Q Networks (DQN)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 28 / 53

Algorithms

We use algorithms to search for the optimal policy 𝜋∗

Virtually all algorithms are based on either Q Learning (QL), Policy
Gradient (PG), or both

Popular algorithms:
• Deep Q Networks (DQN)
• Proximal Policy Optimization (PPO)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 28 / 53

Algorithms

We use algorithms to search for the optimal policy 𝜋∗

Virtually all algorithms are based on either Q Learning (QL), Policy
Gradient (PG), or both

Popular algorithms:
• Deep Q Networks (DQN)
• Proximal Policy Optimization (PPO)
• Deep Deterministic Policy Gradient (DDPG)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 28 / 53

Algorithms

We use algorithms to search for the optimal policy 𝜋∗

Virtually all algorithms are based on either Q Learning (QL), Policy
Gradient (PG), or both

Popular algorithms:
• Deep Q Networks (DQN)
• Proximal Policy Optimization (PPO)
• Deep Deterministic Policy Gradient (DDPG)
• Twin Deep Deterministic Policy Gradient (TD3)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 28 / 53

Algorithms

We use algorithms to search for the optimal policy 𝜋∗

Virtually all algorithms are based on either Q Learning (QL), Policy
Gradient (PG), or both

Popular algorithms:
• Deep Q Networks (DQN)
• Proximal Policy Optimization (PPO)
• Deep Deterministic Policy Gradient (DDPG)
• Twin Deep Deterministic Policy Gradient (TD3)
• Soft Actor Critic (SAC)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 28 / 53

Algorithms

We use algorithms to search for the optimal policy 𝜋∗

Virtually all algorithms are based on either Q Learning (QL), Policy
Gradient (PG), or both

Popular algorithms:
• Deep Q Networks (DQN)
• Proximal Policy Optimization (PPO)
• Deep Deterministic Policy Gradient (DDPG)
• Twin Deep Deterministic Policy Gradient (TD3)
• Soft Actor Critic (SAC)
• Advantage Weighted Regression (AWR)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 28 / 53

Algorithms

We use algorithms to search for the optimal policy 𝜋∗

Virtually all algorithms are based on either Q Learning (QL), Policy
Gradient (PG), or both

Popular algorithms:
• Deep Q Networks (DQN)
• Proximal Policy Optimization (PPO)
• Deep Deterministic Policy Gradient (DDPG)
• Twin Deep Deterministic Policy Gradient (TD3)
• Soft Actor Critic (SAC)
• Advantage Weighted Regression (AWR)
• Asynchronous Actor Critic (A2C)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 28 / 53

Algorithms

DQN: Q learning using a deep neural network

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 29 / 53

Algorithms

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and Q/V function

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 29 / 53

Algorithms

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and Q/V function

DDPG: Q learning with continuous actions via learned argmax

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 29 / 53

Algorithms

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and Q/V function

DDPG: Q learning with continuous actions via learned argmax

TD3: DDPG with action noise and a double Q trick

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 29 / 53

Algorithms

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and Q/V function

DDPG: Q learning with continuous actions via learned argmax

TD3: DDPG with action noise and a double Q trick

SAC: TD3 with entropy bonuses

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 29 / 53

Algorithms

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and Q/V function

DDPG: Q learning with continuous actions via learned argmax

TD3: DDPG with action noise and a double Q trick

SAC: TD3 with entropy bonuses

AWR: Offline policy gradient with Q/V function

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 29 / 53

Algorithms

DQN: Q learning using a deep neural network

PPO: Policy gradient with update clipping and Q/V function

DDPG: Q learning with continuous actions via learned argmax

TD3: DDPG with action noise and a double Q trick

SAC: TD3 with entropy bonuses

AWR: Offline policy gradient with Q/V function

A2C: Policy gradient with Q/V function

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 29 / 53

Q Learning

1. Lecture (approx. 1 hour)
1. Review
2. Finish up MDPs
3. Agents/policies
4. Derive and define Q learning

2. Discussion/questions (approx. 30 mins)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 30 / 53

Q Learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 31 / 53

Q Learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 31 / 53

Q Learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as
discussed, many algorithms add tricks to Q learning

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 31 / 53

Q Learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as
discussed, many algorithms add tricks to Q learning

The Plan:

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 31 / 53

Q Learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as
discussed, many algorithms add tricks to Q learning

The Plan:
1. Derive the value function 𝑉

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 31 / 53

Q Learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as
discussed, many algorithms add tricks to Q learning

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 31 / 53

Q Learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as
discussed, many algorithms add tricks to Q learning

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑄

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 31 / 53

Q Learning

Q learning is state of the art in 2024 (see REDQ, DroQ, TQC)

Today, we are doing a deep dive on Q learning

A theoretical understanding of Q learning is necessary, because as
discussed, many algorithms add tricks to Q learning

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑄

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 31 / 53

Step 1: The Value Function

Recall the discounted return of a specific policy 𝜋

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 32 / 53

Step 1: The Value Function

Recall the discounted return of a specific policy 𝜋

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 32 / 53

Step 1: The Value Function

Recall the discounted return of a specific policy 𝜋

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

In English: At each timestep, we take an action 𝑎𝑡 ∼ 𝜋(𝑠𝑡)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 32 / 53

Step 1: The Value Function

Recall the discounted return of a specific policy 𝜋

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

In English: At each timestep, we take an action 𝑎𝑡 ∼ 𝜋(𝑠𝑡)

follow the state transition function 𝑠𝑡+1 ∼ 𝑇(𝑠𝑡, 𝑎𝑡)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 32 / 53

Step 1: The Value Function

Recall the discounted return of a specific policy 𝜋

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

In English: At each timestep, we take an action 𝑎𝑡 ∼ 𝜋(𝑠𝑡)

follow the state transition function 𝑠𝑡+1 ∼ 𝑇(𝑠𝑡, 𝑎𝑡)

and get a reward 𝑟𝑡 = 𝑅(𝑠𝑡+1)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 32 / 53

Step 1: The Value Function

𝐺𝜋 = 𝔼[∑∞
𝑡=0 𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 33 / 53

Step 1: The Value Function

𝐺𝜋 = 𝔼[∑∞
𝑡=0 𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Rather than start the return from a given timestep, what if we defined it
from a given state?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 33 / 53

Step 1: The Value Function

𝐺𝜋 = 𝔼[∑∞
𝑡=0 𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Rather than start the return from a given timestep, what if we defined it
from a given state?

We call this the Value Function (𝑽𝝅) 𝑉𝜋 : 𝑆 → ℝ

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 33 / 53

Step 1: The Value Function

𝐺𝜋 = 𝔼[∑∞
𝑡=0 𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Rather than start the return from a given timestep, what if we defined it
from a given state?

We call this the Value Function (𝑽𝝅) 𝑉𝜋 : 𝑆 → ℝ

𝑉𝜋(𝑠0) = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 33 / 53

Step 1: The Value Function

𝐺𝜋 = 𝔼[∑∞
𝑡=0 𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Rather than start the return from a given timestep, what if we defined it
from a given state?

We call this the Value Function (𝑽𝝅) 𝑉𝜋 : 𝑆 → ℝ

𝑉𝜋(𝑠0) = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Measures the value of a state (how good is it to be in this state?), for a
given policy 𝜋

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 33 / 53

Step 2: Deriving Q

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑽
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑄

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 34 / 53

Step 2: The Q Function

𝑉𝜋(𝑠0) = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 35 / 53

Step 2: The Q Function

𝑉𝜋(𝑠0) = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Let’s go one step further. What if the value function were conditioned
on the first action?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 35 / 53

Step 2: The Q Function

𝑉𝜋(𝑠0) = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Let’s go one step further. What if the value function were conditioned
on the first action?

First, let’s factor out the upcoming reward

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 35 / 53

Step 2: The Q Function

𝑉𝜋(𝑠0) = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Let’s go one step further. What if the value function were conditioned
on the first action?

First, let’s factor out the upcoming reward

𝑉𝜋(𝑠0) = 𝔼[𝑟0 | 𝑎0 ∼ 𝜋(𝑠0)] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 35 / 53

Step 2: The Q Function

𝑉𝜋(𝑠0) = 𝔼[𝑟0 | 𝑎0 ∼ 𝜋(𝑠0)] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Now we can rewrite 𝑉𝜋 as a function of the action, independent of 𝜋

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 36 / 53

Step 2: The Q Function

𝑉𝜋(𝑠0) = 𝔼[𝑟0 | 𝑎0 ∼ 𝜋(𝑠0)] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Now we can rewrite 𝑉𝜋 as a function of the action, independent of 𝜋

𝑉𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 36 / 53

Step 2: The Q Function

𝑉𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 37 / 53

Step 2: The Q Function

𝑉𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

When 𝑉 depends on a specific action, we call it the Q function:

𝑆 × 𝐴 → ℝ

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 37 / 53

Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 38 / 53

Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

The Q function might appear simple but it is very powerful

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 38 / 53

Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

The Q function might appear simple but it is very powerful

𝑎0 affects your next state 𝑠1, which affects the future

𝑠1

𝑠0

𝑠1

𝑠2

𝑠2 …

…

𝑎0 = 1

𝑎0 = 2
𝑎1

𝑎1

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 38 / 53

Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Example: You have MPhil offers from Cambridge and Oxford

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 39 / 53

Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Example: You have MPhil offers from Cambridge and Oxford

𝑎0 = {Oxford, Cambridge}

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 39 / 53

Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Example: You have MPhil offers from Cambridge and Oxford

𝑎0 = {Oxford, Cambridge}

Q function gives you a number denoting how much better your life will
be for attending Cambridge (based on your behavior 𝜋). Takes into
account reward (based on income, friend group, experiences, etc).

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 39 / 53

Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

𝑄(𝑠0, Cambridge) = 𝑓(friends + experiences + income) = 1200
𝑄(𝑠0, Oxford) = 𝑓(friends + experiences + income) = 900

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 40 / 53

Step 2: The Q Function

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

𝑄(𝑠0, Cambridge) = 𝑓(friends + experiences + income) = 1200
𝑄(𝑠0, Oxford) = 𝑓(friends + experiences + income) = 900

𝑠1

𝑠0

𝑠1

𝑠2

𝑠2 …

…

𝑎0 = 1

𝑎0 = 2
𝑎1

𝑎1

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 40 / 53

Step 3: Find the Policy

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑸
4. Learn to train 𝑄

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 41 / 53

Step 3: Find the Policy

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

We know the Q function for a specific policy 𝜋, but how does this help
us learn a policy?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 42 / 53

Step 3: Find the Policy

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

We know the Q function for a specific policy 𝜋, but how does this help
us learn a policy?

What would the Q function for the optimal policy 𝜋∗ look like? Just add
∗ to 𝜋

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 42 / 53

Step 3: Find the Policy

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

We know the Q function for a specific policy 𝜋, but how does this help
us learn a policy?

What would the Q function for the optimal policy 𝜋∗ look like? Just add
∗ to 𝜋

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 42 / 53

Step 3: Find the Policy

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]

Richard Bellman proved that a greedy policy is optimal (see the Bellman
Equation)

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 43 / 53

Step 3: Find the Policy

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]

Richard Bellman proved that a greedy policy is optimal (see the Bellman
Equation)

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

In English: Just take things one step at a time. Compute Q value for all
possible actions and pick the action with the biggest Q value. Repeat at
each timestep.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 43 / 53

Step 3: Find the Policy

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 44 / 53

Step 3: Find the Policy

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

𝑸∗(𝒔𝟎, 𝐂𝐚𝐦𝐛𝐫𝐢𝐝𝐠𝐞) = 𝒇(𝐟𝐫𝐢𝐞𝐧𝐝𝐬 + 𝐞𝐱𝐩𝐞𝐫𝐢𝐞𝐧𝐜𝐞𝐬 + 𝐢𝐧𝐜𝐨𝐦𝐞) = 𝟏𝟐𝟎𝟎
𝑄∗(𝑠0, Oxford) = 𝑓(friends + experiences + income) = 900

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 44 / 53

Step 3: Find the Policy

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

𝑸∗(𝒔𝟎, 𝐂𝐚𝐦𝐛𝐫𝐢𝐝𝐠𝐞) = 𝒇(𝐟𝐫𝐢𝐞𝐧𝐝𝐬 + 𝐞𝐱𝐩𝐞𝐫𝐢𝐞𝐧𝐜𝐞𝐬 + 𝐢𝐧𝐜𝐨𝐦𝐞) = 𝟏𝟐𝟎𝟎
𝑄∗(𝑠0, Oxford) = 𝑓(friends + experiences + income) = 900

𝑠1

𝑠0

𝑠1

𝑠2

𝑠2 …

…

𝑎0 = 1

𝑎0 = 2
𝑎1

𝑎1

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 44 / 53

Step 3: Find the Policy

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 45 / 53

Step 3: Find the Policy

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]

We can rewrite 𝑄∗ using our new 𝜋∗

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 45 / 53

Step 3: Find the Policy

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋∗(𝑠𝑡)]

We can rewrite 𝑄∗ using our new 𝜋∗

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

Sidenote: OpenAI’s leaked AI breakthrough named 𝑄∗ is likely related to this!

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 45 / 53

Step 4: Train Q

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑸

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 46 / 53

Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 47 / 53

Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼

⎣
⎢
⎢
⎢
⎡

∑
∞

𝑡=1
𝛾𝑡𝑟𝑡

⏟
Very annoying

| 𝑎𝑡 = argmax
{𝑎∈𝐴}

𝑄(𝑠𝑡, 𝑎)

⎦
⎥
⎥
⎥
⎤

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 48 / 53

Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼

⎣
⎢
⎢
⎢
⎡

∑
∞

𝑡=1
𝛾𝑡𝑟𝑡

⏟
Very annoying

| 𝑎𝑡 = argmax
{𝑎∈𝐴}

𝑄(𝑠𝑡, 𝑎)

⎦
⎥
⎥
⎥
⎤

After infinite time, we will have one datapoint for training. Can we get
rid of the infinite sum?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 48 / 53

Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

Factoring out the first element worked before, let’s try it again

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 49 / 53

Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

Factoring out the first element worked before, let’s try it again

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] +

𝛾 ⋅ 𝔼[𝑟1 | 𝑎1 = argmax
{𝑎∈𝐴}

𝑄∗(𝑠0, 𝑎)] + 𝔼[∑
∞

𝑡=2
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 49 / 53

Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

Factoring out the first element worked before, let’s try it again

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] +

𝛾 ⋅ 𝔼[𝑟1 | 𝑎1 = argmax
{𝑎∈𝐴}

𝑄(𝑠1, 𝑎)] + 𝔼[∑
∞

𝑡=2
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 49 / 53

Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

Factoring out the first element worked before, let’s try it again

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] +

𝛾 ⋅ 𝔼[𝑟1 | 𝑎1 = argmax
{𝑎∈𝐴}

𝑄(𝑠1, 𝑎)] + 𝔼[∑
∞

𝑡=2
𝛾𝑡𝑟𝑡 | 𝑎𝑡 = argmax

{𝑎∈𝐴}
𝑄∗(𝑠𝑡, 𝑎)]

It is the Q function starting at 𝑠1, a recursive formulation!

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝛾 ⋅ max
{𝑎∈𝐴}

𝑄∗(𝑠1, 𝑎)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 49 / 53

Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝛾 ⋅ max
{𝑎∈𝐴}

𝑄∗(𝑠1, 𝑎)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 50 / 53

Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝛾 ⋅ max
{𝑎∈𝐴}

𝑄∗(𝑠1, 𝑎)

Often written more simply as

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 50 / 53

Step 4: Train Q

𝑄∗(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝛾 ⋅ max
{𝑎∈𝐴}

𝑄∗(𝑠1, 𝑎)

Often written more simply as

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)

With the infinite sum gone, this is much easier to compute

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 50 / 53

Summary
We defined the 𝑄 function

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 51 / 53

Summary
We defined the 𝑄 function

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)

We defined the optimal policy given the 𝑄 function

𝜋(𝑠) = argmax
𝑎∈𝐴

𝑄(𝑠, 𝑎, 𝜃)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 51 / 53

Summary
We defined the 𝑄 function

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)

We defined the optimal policy given the 𝑄 function

𝜋(𝑠) = argmax
𝑎∈𝐴

𝑄(𝑠, 𝑎, 𝜃)

We defined the Q function training objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ argmax
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 51 / 53

Next Time

Homework: Read Human-level control through deep reinforcement
learning, Mnih et. al

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 52 / 53

Next Time

Homework: Read Human-level control through deep reinforcement
learning, Mnih et. al

They go from our Q learning definition to an agent that can beat
humans at most Atari games

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 52 / 53

Next Time

Homework: Read Human-level control through deep reinforcement
learning, Mnih et. al

They go from our Q learning definition to an agent that can beat
humans at most Atari games

This is what your miniproject is based on

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 52 / 53

Next Time

Homework: Read Human-level control through deep reinforcement
learning, Mnih et. al

They go from our Q learning definition to an agent that can beat
humans at most Atari games

This is what your miniproject is based on

Next Time: We will focus on a practical implementation of Deep Q
Learning

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 52 / 53

Discussion Topics
1. Go around and introduce everyone

• Name and 2-3 sentences why they chose this module

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 53 / 53

Discussion Topics
1. Go around and introduce everyone

• Name and 2-3 sentences why they chose this module

2. What “works” in RL?
• Why aren’t there robots delivering me lunch and folding my laundry?

3. ML/RL was supposed to free us from menial labor and give us time to pursue
our passions
• Now thousands of people provide thumbs up/thumbs down for ChatGPT

completions 40 hours a week, while GPT-based models produce art, music,
creative writing, etc

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 53 / 53

Discussion Topics
1. Go around and introduce everyone

• Name and 2-3 sentences why they chose this module

2. What “works” in RL?
• Why aren’t there robots delivering me lunch and folding my laundry?

3. ML/RL was supposed to free us from menial labor and give us time to pursue
our passions
• Now thousands of people provide thumbs up/thumbs down for ChatGPT

completions 40 hours a week, while GPT-based models produce art, music,
creative writing, etc

4. What are you most excited to learn about next?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 53 / 53

Discussion Topics
1. Go around and introduce everyone

• Name and 2-3 sentences why they chose this module

2. What “works” in RL?
• Why aren’t there robots delivering me lunch and folding my laundry?

3. ML/RL was supposed to free us from menial labor and give us time to pursue
our passions
• Now thousands of people provide thumbs up/thumbs down for ChatGPT

completions 40 hours a week, while GPT-based models produce art, music,
creative writing, etc

4. What are you most excited to learn about next?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 2: Q Learning 53 / 53

	Overview
	Overview
	Review
	Review
	Review
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	State Transition Function
	State Transition Function
	State Transition Function
	State Transition Function
	State Transition Function
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Overview
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Markov States
	Markov States
	Markov States
	Markov States
	Markov States
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Super Mario Bros
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	Markov Decision Processes
	MDP Wrap Up
	MDP Wrap Up
	MDP Wrap Up
	MDP Wrap Up
	MDP Wrap Up
	MDP Wrap Up
	Reinforcement Learning
	Reinforcement Learning
	Policies
	Policies
	Policies
	Policies
	Policies
	Policies
	Policies
	Policies
	Policies
	Policies
	Policies
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Algorithms
	Q Learning
	Q Learning
	Q Learning
	Q Learning
	Q Learning
	Q Learning
	Q Learning
	Q Learning
	Q Learning
	Step 1: The Value Function
	Step 1: The Value Function
	Step 1: The Value Function
	Step 1: The Value Function
	Step 1: The Value Function
	Step 1: The Value Function
	Step 1: The Value Function
	Step 1: The Value Function
	Step 1: The Value Function
	Step 1: The Value Function
	Step 2: Deriving Q
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 2: The Q Function
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 3: Find the Policy
	Step 4: Train Q
	Step 4: Train Q
	Step 4: Train Q
	Step 4: Train Q
	Step 4: Train Q
	Step 4: Train Q
	Step 4: Train Q
	Step 4: Train Q
	Step 4: Train Q
	Step 4: Train Q
	Step 4: Train Q
	Summary
	Summary
	Summary
	Next Time
	Next Time
	Next Time
	Next Time
	Discussion Topics
	Discussion Topics
	Discussion Topics
	Discussion Topics

