
Deep Q Networks
Deep Reinforcement Learning

University of Cambridge

Agenda

• Review

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 2 / 79

Agenda

• Review
• State of the field

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 2 / 79

Agenda

• Review
• State of the field
• Implement Deep Q Networks (DQN) (Mnih et al.)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 2 / 79

Agenda

• Review
• State of the field
• Implement Deep Q Networks (DQN) (Mnih et al.)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 3 / 79

Review

Review:
• Finished up MDPs

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 4 / 79

Review

Review:
• Finished up MDPs
• The return and optimal policies

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 4 / 79

Review

Review:
• Finished up MDPs
• The return and optimal policies
• Deep Q learning

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 4 / 79

Review

Review:
• Finished up MDPs
• The discounted return and optimal policies
• Deep Q learning

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 5 / 79

Review

Review:
• Finished up MDPs
• The return and optimal policies
• Deep Q learning

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 6 / 79

Review

The discounted return (𝑮)

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑅(𝑠𝑡+1) = ∑

∞

𝑡=0
𝛾𝑡𝑟𝑡

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 7 / 79

Review

The discounted return (𝑮)

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑅(𝑠𝑡+1) = ∑

∞

𝑡=0
𝛾𝑡𝑟𝑡

With a reward of 1 at each timestep and 𝛾 = 0.9

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 = 1 + 0.9 + 0.81 + … =

1
1 − 𝛾

= 10

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 7 / 79

Review

The expected discounted return (𝑮𝝅)

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 8 / 79

Review

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Transitions and policy are stochastic. Consider uncertainty in the reward.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 9 / 79

Review

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Transitions and policy are stochastic. Consider uncertainty in the reward.

𝑟𝑡 ∼
⎣
⎢
⎡𝑅(𝑠𝑡+1)⏟

reward fn

state trans. probs
⏞⏞⏞⏞⏞⏞⏞𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)⏟⏟⏟⏟⏟

action probs⎦
⎥
⎤

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 9 / 79

Review

𝑟𝑡 ∼
⎣
⎢
⎡𝑅(𝑠𝑡+1)⏟

reward fn

state trans. probs
⏞⏞⏞⏞⏞⏞⏞𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)⏟⏟⏟⏟⏟

action probs⎦
⎥
⎤

The expectation turns that distribution into a single number. This tells
us what reward to expect “on average”

𝔼[𝑟𝑡] = ∫
𝑠𝑡+1

∫
𝐴

𝑅(𝑠𝑡+1)⏟
reward fn

state trans. probs
⏞⏞⏞⏞⏞⏞⏞𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)⏟⏟⏟⏟⏟

action probs

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 10 / 79

Review

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

With the expected discounted return, we can define the optimal policy

𝜋∗ = max
𝜋

 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 11 / 79

Review

Review:
• Finished up MDPs
• The return and optimal policies
• Deep Q learning

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 12 / 79

Review

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑄

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 13 / 79

Review

The Plan:
1. Derive the value function 𝑽
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑄

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 14 / 79

Review

With the expected return

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

We derived the Value Function (𝑽𝝅) 𝑉𝜋 : 𝑆 → ℝ

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 15 / 79

Review

With the expected return

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

We derived the Value Function (𝑽𝝅) 𝑉𝜋 : 𝑆 → ℝ

𝑉𝜋(𝑠0) = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 15 / 79

Review

With the expected return

𝐺𝜋 = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

We derived the Value Function (𝑽𝝅) 𝑉𝜋 : 𝑆 → ℝ

𝑉𝜋(𝑠0) = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Difference between 𝐺𝜋 and 𝑉𝜋 is dependence on 𝑠0

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 15 / 79

Review

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑽
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑄

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 16 / 79

Review

Factor out first term from the return to introduce a dependence on 𝑎0

𝑉𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 17 / 79

Review

Factor out first term from the return to introduce a dependence on 𝑎0

𝑉𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

When 𝑉 depends on a specific action, we call it the Q function:

𝑆 × 𝐴 → ℝ

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 17 / 79

Review

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑸
4. Learn to train 𝑄

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 18 / 79

Review

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

In English: Compute Q value for all possible actions and pick the
action with the biggest Q value. Repeat at each timestep.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 19 / 79

Review

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑸

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 20 / 79

Review

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 21 / 79

Review

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)

This course is Deep RL, so we need to use a neural network, parameterized by 𝜃

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 21 / 79

Review

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)

This course is Deep RL, so we need to use a neural network, parameterized by 𝜃

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 21 / 79

Review

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)

This course is Deep RL, so we need to use a neural network, parameterized by 𝜃

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)

𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)) = 0

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 21 / 79

Review

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)

This course is Deep RL, so we need to use a neural network, parameterized by 𝜃

𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)) = 0

Training objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 21 / 79

Agenda

• Review
• State of the field
• Implement Deep Q Networks (DQN) (Mnih et al.)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 22 / 79

Deep RL

Like much of deep learning, Deep RL has a gap between theory and
practice

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 23 / 79

Deep RL

Like much of deep learning, Deep RL has a gap between theory and
practice

Just like neural networks (1943) and backpropagation (1970), the theory
of value functions (1957) and Q learning (1989) has been around for a
long time

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 23 / 79

Deep RL

Like much of deep learning, Deep RL has a gap between theory and
practice

Just like neural networks (1943) and backpropagation (1970), the theory
of value functions (1957) and Q learning (1989) has been around for a
long time

Hardware advances and good ML software enabled us to take advantage
of decades of theory. Mnih et al (2015) took Q learning theory and made
it work well with neural networks

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 23 / 79

Deep RL

Like much of deep learning, Deep RL has a gap between theory and
practice

Just like neural networks (1943) and backpropagation (1970), the theory
of value functions (1957) and Q learning (1989) has been around for a
long time

Hardware advances and good ML software enabled us to take advantage
of decades of theory. Mnih et al (2015) took Q learning theory and made
it work well with neural networks

Since its inception, Deep RL has added “patches” to combine theory
with deep networks to obtain better and better results

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 23 / 79

Agenda

• Review
• State of the field
• Implement Deep Q Networks (DQN) (Mnih et al.)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 24 / 79

The Train Loop

Those familiar with deep learning know of the “training loop"

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 25 / 79

The Train Loop

Those familiar with deep learning know of the “training loop"

dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional

for update in range(num_updates):
 train_data = dataset.sample()
 theta = train(model, theta, train_data) # Functional
 metrics = evaluate(model, theta, dataset.val_set)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 25 / 79

The Train Loop

Those familiar with deep learning know of the “training loop"

==> dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional

for update in range(num_updates):
 train_data = dataset.sample()
 theta = train(model, theta, train_data) # Functional
 metrics = evaluate(model, theta, dataset.val_set)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 25 / 79

The Train Loop

Those familiar with deep learning know of the “training loop"

==>
dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional

for update in range(num_updates):
 train_data = dataset.sample()
 theta = train(model, theta, train_data) # Functional
 metrics = evaluate(model, theta, dataset.val_set)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 25 / 79

The Train Loop

Those familiar with deep learning know of the “training loop"

==>

dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional

for update in range(num_updates):
 train_data = dataset.sample()
 theta = train(model, theta, train_data) # Functional
 metrics = evaluate(model, theta, dataset.val_set)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 25 / 79

The Train Loop

Those familiar with deep learning know of the “training loop"

==>

dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional

for update in range(num_updates):
 train_data = dataset.sample()
 theta = train(model, theta, train_data) # Functional
 metrics = evaluate(model, theta, dataset.val_set)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 25 / 79

The Train Loop

Those familiar with deep learning know of the “training loop"

==>

dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional

for update in range(num_updates):
 train_data = dataset.sample()
 theta = train(model, theta, train_data) # Functional
 metrics = evaluate(model, theta, dataset.val_set)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 25 / 79

The Train Loop

Those familiar with deep learning know of the “training loop"

==>

dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional

for update in range(num_updates):
 train_data = dataset.sample()
 theta = train(model, theta, train_data) # Functional
 metrics = evaluate(model, theta, dataset.val_set)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 25 / 79

The Train Loop

Those familiar with deep learning know of the “training loop"

==>

dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional

for update in range(num_updates):
 train_data = dataset.sample()
 theta = train(model, theta, train_data) # Functional
 metrics = evaluate(model, theta, dataset.val_set)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 25 / 79

The Train Loop

Deep RL has a training loop similar to the deep learning loop

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 26 / 79

The Train Loop

Deep RL has a training loop similar to the deep learning loop

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 26 / 79

The Environment

Main differences with the DL train loop

==>

==>

==>
==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 27 / 79

The Environment

Today: Go through the loop line by line to implement DQN

==>

==>

==>
==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 28 / 79

The Environment

Instead of loading a static dataset, we collect data from an environment

==> env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 29 / 79

The Environment

The Plan:
1. Terminal states
2. The Gymnasium interface

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 30 / 79

The Environment

The Plan:
1. Terminal states
2. The Gymnasium interface

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 31 / 79

Terminal States

Question: How can we represent
a Mario Bros Game Over screen in
an MDP?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 32 / 79

Terminal States

Question: How can we represent
a Mario Bros Game Over screen in
an MDP?

Answer: We enter a terminal
state that we cannot leave

𝑠terminal

𝑎 = 1

𝑎 = 2

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 32 / 79

Terminal States

How do we model the return in these terminal states?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 33 / 79

Terminal States

How do we model the return in these terminal states?

Recall the discounted return

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 33 / 79

Terminal States

How do we model the return in these terminal states?

Recall the discounted return

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡

After entering the terminal state at 𝑡 = 𝑛 all future rewards are zero. We
can write the discounted return as

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 ⋅ (𝑡 ≤ 𝑛) = ∑

𝑛

𝑡=0
𝛾𝑡𝑟𝑡

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 33 / 79

Terminal States

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 ⋅ (𝑡 ≤ 𝑛) = ∑

𝑛

𝑡=0
𝛾𝑡𝑟𝑡

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 34 / 79

Terminal States

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 ⋅ (𝑡 ≤ 𝑛) = ∑

𝑛

𝑡=0
𝛾𝑡𝑟𝑡

Many environments introduce the done flag (d) to simplify data
collection and training

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 34 / 79

Terminal States

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 ⋅ (𝑡 ≤ 𝑛) = ∑

𝑛

𝑡=0
𝛾𝑡𝑟𝑡

Many environments introduce the done flag (d) to simplify data
collection and training

(
𝑠0

𝑑0 = 0
𝑠1

𝑑1 = 0
𝑠2

𝑑2 = 0
…
…

𝑠𝑛

𝑑𝑛 = 1)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 34 / 79

Terminal States

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 ⋅ (𝑡 ≤ 𝑛) = ∑

𝑛

𝑡=0
𝛾𝑡𝑟𝑡

Many environments introduce the done flag (d) to simplify data
collection and training

(
𝑠0

𝑑0 = 0
𝑠1

𝑑1 = 0
𝑠2

𝑑2 = 0
…
…

𝑠𝑛

𝑑𝑛 = 1)

We call the states from the initial to terminal state an episode

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 34 / 79

The Environment

The Plan:
1. Terminal states
2. The Gymnasium interface

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 35 / 79

Environment Libraries

The gymnasium library contains many popular test environments

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 36 / 79

Environment Libraries

The gymnasium library contains many popular test environments

gymnasium also defines the standard environment interface

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 36 / 79

The Gym Interface

Launching environments is very easy

env = gymnasium.make("LunarLander-v2")

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 37 / 79

The Gym Interface

Launching environments is very easy

env = gymnasium.make("LunarLander-v2")

What is 𝑆, 𝐴 for LunarLander?

S, A = env.observation_space, env.action_space

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 37 / 79

The Gym Interface

Launching environments is very easy

env = gymnasium.make("LunarLander-v2")

What is 𝑆, 𝐴 for LunarLander?

S, A = env.observation_space, env.action_space

Observations are states that are not guaranteed to be Markov. For
LunarLander, they are Markov.

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 37 / 79

The Gym Interface
env = gymnasium.make("LunarLander-v2")

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 38 / 79

The Gym Interface
env = gymnasium.make("LunarLander-v2")

The environments start “off”. We must reset the environment, which
returns an initial state.

state, _ = env.reset(seed=0)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 38 / 79

The Gym Interface
env = gymnasium.make("LunarLander-v2")

The environments start “off”. We must reset the environment, which
returns an initial state.

state, _ = env.reset(seed=0)

Step the environment in time by feeding an action (transition function
𝑇)

next_state, reward, terminated, truncated, _ = env.step(action)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 38 / 79

The Gym Interface
env = gymnasium.make("LunarLander-v2")

The environments start “off”. We must reset the environment, which
returns an initial state.

state, _ = env.reset(seed=0)

Step the environment in time by feeding an action (transition function
𝑇)

next_state, reward, terminated, truncated, _ = env.step(action)

𝑑 = terminated ∨ truncated

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 38 / 79

The Gym Interface

You can write your own environments using gymnasium

 class RoboParking(gymnasium.Env):
 observation_space = spaces.Box(
 # x, y, xdot, ydot
 low=(0, 0, -1, -1),
 high=(4, 4, 1, 1),
 dtype=np.float32
)
 # left, right, forward, backward
 action_space = spaces.Discrete(4)

 def R(self, pos): # R(s')
 # Our goal is 0,0,0,0
 return norm(sensor.state())

 def T(self, action):
 # We don't know the true T
 wheels.apply_torque(action)
 next_state = sensor.state()
 return next_state

 def step(self, action):
 next_state = T(action) # s'
 return (
 next_state,
 R(next_state), # reward R(s')
 norm(next_state) < 0.01 # d
 False, {} # trunc, extra info
)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 39 / 79

We discussed the environment

==> env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 40 / 79

Next, let us define the deep Q function

==>
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 41 / 79

The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 42 / 79

The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 42 / 79

The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We would need to evaluate Q function |𝐴| times for each state

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 42 / 79

The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We would need to evaluate Q function |𝐴| times for each state

𝑄(𝑠, 𝑎 = 1)
𝑄(𝑠, 𝑎 = 2)

⋮

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 42 / 79

The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We would need to evaluate Q function |𝐴| times for each state

𝑄(𝑠, 𝑎 = 1)
𝑄(𝑠, 𝑎 = 2)

⋮

Inefficient: |𝐴| = 100 means 100 forward passes for each timestep

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 42 / 79

The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 42 / 79

The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Compute the Q value for all actions in a single forward pass

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 42 / 79

The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Compute the Q value for all actions in a single forward pass

𝑄(𝑠, 𝜃) = 𝑄(𝑠, 𝑎 = 1, 𝜃),
𝑄(𝑠, 𝑎 = 2, 𝜃),
⋮

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 42 / 79

The Q Network

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 43 / 79

The Q Network

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Architecture: 2 layer MLP with hidden size of 256 is sufficient for
standard benchmarks

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 43 / 79

The Q Network

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Architecture: 2 layer MLP with hidden size of 256 is sufficient for
standard benchmarks

Q = Sequential(
 Linear(state_size, 256), LeakyReLU(),
 Linear(256, 256), LeakyReLU(),
 Linear(256, action_size)
)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 43 / 79

The Q Network

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Architecture: 2 layer MLP with hidden size of 256 is sufficient for
standard benchmarks

Q = Sequential(
 Linear(state_size, 256), LayerNorm(), LeakyReLU(),
 Linear(256, 256), LayerNorm(), LeakyReLU(),
 Linear(256, action_size)
)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 43 / 79

The Q Network

For states with structure (e.g., pixels), prepend encoders to Q

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 44 / 79

The Q Network

For states with structure (e.g., pixels), prepend encoders to Q

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 44 / 79

Init

Done with the Q function architecture, let’s discuss init

==>
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 45 / 79

Init

Done with the Q function architecture, let’s discuss init

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 45 / 79

The Q Network

Not much to say for parameter initialization

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 46 / 79

The Q Network

Not much to say for parameter initialization

Tip: Initialize the final layer of your Q function to output values near 0

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 46 / 79

The Q Network

Not much to say for parameter initialization

Tip: Initialize the final layer of your Q function to output values near 0

nn.init.normal(std=1e-3, bias=0)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 46 / 79

The Q Network

Not much to say for parameter initialization

Tip: Initialize the final layer of your Q function to output values near 0

nn.init.normal(std=1e-3, bias=0)

Prevents Q value overestimation (to be discussed in depth later)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 46 / 79

Policy

Done with init, let’s discuss policy 𝜋

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 47 / 79

Policy

Done with init, let’s discuss policy 𝜋

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 47 / 79

Policy

Recall the policy 𝜋 : 𝑆 → Δ𝐴

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 48 / 79

Policy

Recall the policy 𝜋 : 𝑆 → Δ𝐴

In practice, we usually have two policies

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 48 / 79

Policy

Recall the policy 𝜋 : 𝑆 → Δ𝐴

In practice, we usually have two policies
1. The optimal policy we are trying to learn (𝜋)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 48 / 79

Policy

Recall the policy 𝜋 : 𝑆 → Δ𝐴

In practice, we usually have two policies
1. The optimal policy we are trying to learn (𝜋)
2. An exploration policy (𝝅𝑬) for collecting training data

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 48 / 79

Policy

Recall the policy 𝜋 : 𝑆 → Δ𝐴

In practice, we usually have two policies
1. The optimal policy we are trying to learn (𝜋)
2. An exploration policy (𝝅𝑬) for collecting training data

Why do we need 𝜋𝐸?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 48 / 79

Policy

Recall the policy 𝜋 : 𝑆 → Δ𝐴

In practice, we usually have two policies
1. The optimal policy we are trying to learn (𝜋)
2. An exploration policy (𝝅𝑬) for collecting training data

Why do we need 𝜋𝐸?

𝑠1

𝑠0

𝑠1

𝑠2

𝑠2 …

…

𝑎0 = 1

𝑎0 = 2
𝑎1

𝑎1

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 48 / 79

Exploration Policy

We use the exploration policy (𝝅𝑬) to explore and collect data

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 49 / 79

Exploration Policy

We use the exploration policy (𝝅𝑬) to explore and collect data

We will use our collected data to train the Q function. What properties
should our collected data have?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 49 / 79

Exploration Policy

We use the exploration policy (𝝅𝑬) to explore and collect data

We will use our collected data to train the Q function. What properties
should our collected data have?

1. To ensure 𝑄 is accurate everywhere, take every possible action in
every possible state

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 49 / 79

Exploration Policy

We use the exploration policy (𝝅𝑬) to explore and collect data

We will use our collected data to train the Q function. What properties
should our collected data have?

1. To ensure 𝑄 is accurate everywhere, take every possible action in
every possible state

Given these requirements, we cannot do better than random exploration

𝜋𝐸(𝑠) = 𝒰(𝐴)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 49 / 79

Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Question: Are there any downsides to this exploration policy?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 50 / 79

Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Question: Are there any downsides to this exploration policy?

Answer: It could take a really, really long time

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 50 / 79

Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Question: Are there any downsides to this exploration policy?

Answer: It could take a really, really long time

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 50 / 79

Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Alternative: Bias the policy towards states with known large Q values

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 51 / 79

Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Alternative: Bias the policy towards states with known large Q values

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 51 / 79

Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Alternative: Bias the policy towards states with known large Q values

One approach is the 𝝐-greedy policy

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 51 / 79

Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Alternative: Bias the policy towards states with known large Q values

One approach is the 𝝐-greedy policy

𝜖 ∈ [0, 1]
𝑢 ∼ 𝒰[0, 1]

𝜋𝐸(𝑠) = {
𝒰(𝐴) if 𝑢 ≤ 𝜖
argmax𝑎∈𝐴 𝑄(𝑠, 𝑎) if 𝑢 > 𝜖

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 51 / 79

Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Alternative: Bias the policy towards states with known large Q values

One approach is the 𝝐-greedy policy

𝜖 ∈ [0, 1]
𝑢 ∼ 𝒰[0, 1]

𝜋𝐸(𝑠) = {
𝒰(𝐴) if 𝑢 ≤ 𝜖
argmax𝑎∈𝐴 𝑄(𝑠, 𝑎) if 𝑢 > 𝜖

This approach is simple and works surprisingly well in practice

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 51 / 79

Exploration Policy

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 52 / 79

Exploration Policy

Explore promising areas with large Q values more often and as 𝑡 → ∞,
explore all state/action tuples

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 52 / 79

Exploration Policy

Explore promising areas with large Q values more often and as 𝑡 → ∞,
explore all state/action tuples

Question: Any downsides to the 𝜀-greedy approach?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 52 / 79

Exploration Policy

Question: Any downsides to the 𝜀-greedy approach?

Answer: Not independently distributed. The state/action distribution
will be biased by the Q function. Seems to be ignored in practice?

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 52 / 79

Exploration Policy

Summary: Maintain two policies

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 53 / 79

Exploration Policy

Summary: Maintain two policies

𝜋: The policy that approximates 𝜋∗

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 53 / 79

Exploration Policy

Summary: Maintain two policies

𝜋: The policy that approximates 𝜋∗

𝜋𝐸 : A stochastic policy used for exploring the environment and
collecting data

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 53 / 79

Let us make a small change to the pseudocode

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 54 / 79

Now we have two policies, one for collection and one for evaluation

==>

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 55 / 79

Let’s move onto data collection

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 56 / 79

Collectors

We must interact with the MDP to collect training data

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 57 / 79

Collectors

We must interact with the MDP to collect training data

Recall the Q learning objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ argmax
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 57 / 79

Collectors

We must interact with the MDP to collect training data

Recall the Q learning objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ argmax
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

Many algorithms train using a transition tuple (s, a, r, s’, d)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 57 / 79

Collectors

Collecting transitions correctly is deceptively tricky (off by one errors)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 58 / 79

Collectors

Collecting transitions correctly is deceptively tricky (off by one errors)

states, next_states, rewards, actions, dones = [], [], ...
s, _ = env.reset(seed=0)
d = False
while not d:
 a = pi_e(s, theta)
 next_s, r, trunc, term, _ = env.step(action) # r = R(s')
 d = trunc or term
 states.append(s), next_states.append(next_s), rewards...
 s = next_s
n+1 states total, but each list should be len n
episode = (states, next_states, rewards, actions, dones)
return episode

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 58 / 79

Replay Buffers

We call the dataset a replay buffer (𝓓)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 59 / 79

Replay Buffers

We call the dataset a replay buffer (𝓓)

𝒟 =

⎣
⎢⎢
⎡(𝑠0, 𝑎0, 𝑟0, 𝑠′

0, 𝑑0)
(𝑠1, 𝑎1, 𝑟1, 𝑠′

1, 𝑑1)
⋮ ⎦

⎥⎥
⎤

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 59 / 79

Replay Buffers

We call the dataset a replay buffer (𝓓)

𝒟 =

⎣
⎢⎢
⎡(𝑠0, 𝑎0, 𝑟0, 𝑠′

0, 𝑑0)
(𝑠1, 𝑎1, 𝑟1, 𝑠′

1, 𝑑1)
⋮ ⎦

⎥⎥
⎤

 buffer = []
 transitions = [(s_0, a_0, r_0, next_s_0), ...]
 buffer += transitions

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 59 / 79

Replay Buffers

We call the dataset a replay buffer (𝓓)

𝒟 =

⎣
⎢⎢
⎡(𝑠0, 𝑎0, 𝑟0, 𝑠′

0, 𝑑0)
(𝑠1, 𝑎1, 𝑟1, 𝑠′

1, 𝑑1)
⋮ ⎦

⎥⎥
⎤

 buffer = []
 transitions = [(s_0, a_0, r_0, next_s_0), ...]
 buffer += transitions

Note: We often enforce a max size of 𝒟 using a ring buffer

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 59 / 79

Replay Buffers

We populated the dataset, now let’s sample from it

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 60 / 79

Replay Buffers

We populated the dataset, now let’s sample from it

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 60 / 79

Replay Buffers

We sample training data from 𝒟

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 61 / 79

Replay Buffers

We sample training data from 𝒟

We will call the train data our training batch ℬ

ℬ ∼ [𝒰(𝒟), …, 𝒰(𝒟)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 61 / 79

Replay Buffers

We sample training data from 𝒟

We will call the train data our training batch ℬ

ℬ ∼ [𝒰(𝒟), …, 𝒰(𝒟)]

ℬ = [(𝑠𝑗, 𝑎𝑗, 𝑟𝑗, 𝑠′
𝑗, 𝑑𝑗), …, (𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠′

𝑘, 𝑑𝑘)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 61 / 79

Replay Buffers

We sample training data from 𝒟

We will call the train data our training batch ℬ

ℬ ∼ [𝒰(𝒟), …, 𝒰(𝒟)]

ℬ = [(𝑠𝑗, 𝑎𝑗, 𝑟𝑗, 𝑠′
𝑗, 𝑑𝑗), …, (𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠′

𝑘, 𝑑𝑘)]

Randomly sampling old data helps mitigate correlations between data,
improving training stability

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 61 / 79

Replay Buffers

Randomly sampling old data helps mitigate correlations between data,
improving training stability

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 62 / 79

Replay Buffers

Randomly sampling old data helps mitigate correlations between data,
improving training stability

Biased towards many prior policies instead of one

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 62 / 79

Replay Buffers

Randomly sampling old data helps mitigate correlations between data,
improving training stability

Biased towards many prior policies instead of one

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 62 / 79

Loss Function

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 63 / 79

Loss Function

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 63 / 79

Loss Function

We make a few modifications to the Q learning objective to improve
performance

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 64 / 79

Loss Function

We make a few modifications to the Q learning objective to improve
performance
1. Early termination using 𝑑

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 64 / 79

Loss Function

We make a few modifications to the Q learning objective to improve
performance
1. Early termination using 𝑑
2. Target networks

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 64 / 79

Loss Function

We make a few modifications to the Q learning objective to improve
performance
1. Early termination using 𝒅
2. Target networks

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 65 / 79

Loss Function

Recall the standard Q learning objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 66 / 79

Loss Function

Recall the standard Q learning objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

Rather than learn to output 0 at terminal states, we modify the objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 66 / 79

Loss Function

Recall the standard Q learning objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

Rather than learn to output 0 at terminal states, we modify the objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

For terminal transitions, this reduces to

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − 𝑟)2

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 66 / 79

Loss Function

We make a few modifications to the Q learning objective to improve
performance
1. Early termination using 𝑑
2. Target networks

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 67 / 79

Loss Function

Traditional Q learning used a table

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 1 3 2
𝑎 = 1 7 4 5
𝑎 = 2 1 0 0

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 68 / 79

Loss Function

Traditional Q learning used a table

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 1 3 2
𝑎 = 1 7 4 5
𝑎 = 2 1 0 0

Updates are very well defined

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 5 3 2
𝑎 = 1 7 4 5
𝑎 = 2 1 0 0

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 69 / 79

Loss Function

Traditional Q learning used a table

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 1 3 2
𝑎 = 1 7 4 5
𝑎 = 2 1 0 0

Updates are very well defined

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 5 3 2
𝑎 = 1 7 4 5
𝑎 = 2 1 0 0

Neural networks are different.
Increasing a single (𝑠 = 0, 𝑎 = 0)
entry will often perturb the Q
value for all states and actions.

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 5 4 4
𝑎 = 1 9 5 5
𝑎 = 2 4 0 0

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 70 / 79

Loss Function

These perturbations 𝜀 ripple through the Q recursion, with the max
operator resulting in overestimation

𝑄(𝑠, 𝑎, 𝜽′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜃) + 𝜀𝜃]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 71 / 79

Loss Function

These perturbations 𝜀 ripple through the Q recursion, with the max
operator resulting in overestimation

𝑄(𝑠, 𝑎, 𝜽′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜃) + 𝜀𝜃]

𝑄(𝑠, 𝑎, 𝜽″) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜽′) + 𝜀𝜃 + 𝜀𝜃′])

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 71 / 79

Loss Function

These perturbations 𝜀 ripple through the Q recursion, with the max
operator resulting in overestimation

𝑄(𝑠, 𝑎, 𝜽′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜃) + 𝜀𝜃]

𝑄(𝑠, 𝑎, 𝜽″) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜽′) + 𝜀𝜃 + 𝜀𝜃′])

𝑄(𝑠, 𝑎, 𝜃‴) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜽″) + 𝜀𝜃 + 𝜀𝜃′ + 𝜀𝜃″])

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 71 / 79

Loss Function

These perturbations 𝜀 ripple through the Q recursion, with the max
operator resulting in overestimation

𝑄(𝑠, 𝑎, 𝜽′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜃) + 𝜀𝜃]

𝑄(𝑠, 𝑎, 𝜽″) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜽′) + 𝜀𝜃 + 𝜀𝜃′])

𝑄(𝑠, 𝑎, 𝜃‴) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜽″) + 𝜀𝜃 + 𝜀𝜃′ + 𝜀𝜃″])

Compounding pertubations combined with the max operator result in
exploding Q values (i.e., 𝑄(⋅, ⋅) = ∞)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 71 / 79

Loss Function

Compounding pertubations combined with the max operator result in
exploding Q values (i.e., 𝑄(⋅, ⋅) = ∞)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 72 / 79

Loss Function

Compounding pertubations combined with the max operator result in
exploding Q values (i.e., 𝑄(⋅, ⋅) = ∞)

Solution 1: Constrained optimization of neural networks (hard)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 72 / 79

Loss Function

Compounding pertubations combined with the max operator result in
exploding Q values (i.e., 𝑄(⋅, ⋅) = ∞)

Solution 1: Constrained optimization of neural networks (hard)

Solution 2: Very large batch sizes that cover all (𝑠, 𝑎) (intractable)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 72 / 79

Loss Function

Compounding pertubations combined with the max operator result in
exploding Q values (i.e., 𝑄(⋅, ⋅) = ∞)

Solution 1: Constrained optimization of neural networks (hard)

Solution 2: Very large batch sizes that cover all (𝑠, 𝑎) (intractable)

Solution 3: Surrogate target network to break recurrence (easy)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 72 / 79

Loss Function

Solution 3: Surrogate target network to break recurrence (easy)

Initialize target parameters 𝜓 = 𝜃

𝑄(𝑠, 𝑎, 𝜃′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 73 / 79

Loss Function

Solution 3: Surrogate target network to break recurrence (easy)

Initialize target parameters 𝜓 = 𝜃

𝑄(𝑠, 𝑎, 𝜃′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓]

𝑄(𝑠, 𝑎, 𝜃″) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓])

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 73 / 79

Loss Function

Solution 3: Surrogate target network to break recurrence (easy)

Initialize target parameters 𝜓 = 𝜃

𝑄(𝑠, 𝑎, 𝜃′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓]

𝑄(𝑠, 𝑎, 𝜃″) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓])

𝑄(𝑠, 𝑎, 𝜃‴) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓])

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 73 / 79

Loss Function

Solution 3: Surrogate target network to break recurrence (easy)

Initialize target parameters 𝜓 = 𝜃

𝑄(𝑠, 𝑎, 𝜃′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓]

𝑄(𝑠, 𝑎, 𝜃″) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓])

𝑄(𝑠, 𝑎, 𝜃‴) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓])

After a while, set 𝜓 = 𝜃 again

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 73 / 79

Loss Function

Behold, the combination of early termination and target networks

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 74 / 79

Loss Function

Behold, the combination of early termination and target networks

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)

𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)) = 0

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 74 / 79

Loss Function

Behold, the combination of early termination and target networks

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)

𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)) = 0

The standard objective for DQN is

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)))
2

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 74 / 79

Loss Function

We need to make a few small updates given our new objective

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 75 / 79

Loss Function

Initialize target parameters, and use target params in loss function

==>

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta, psi = Q.init(seed=0), Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, psi, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 76 / 79

Evaluation

Same as collect_training_data but use 𝜋 not 𝜋𝐸

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta, psi = Q.init(seed=0), Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, psi, train_data)
 metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 77 / 79

Summary

• Review
• State of the field
• Implement Deep Q Networks (DQN) (Mnih et al.)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 78 / 79

Next Time

• Zach, Riccardo, Grace, Dylan, and Saksham will be lecturing
1. Give us a hint on the topic!
2. Turn in reports (email is best)
3. 10 min presentation + 5 min questions and discussion

• Next lecture is not recorded (reduce anxiety)

• Miniproject handout
• Moodle says due 22 March 16:00

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 79 / 79

	Agenda
	Agenda
	Agenda
	Agenda
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Review
	Agenda
	Deep RL
	Deep RL
	Deep RL
	Deep RL
	Agenda
	The Train Loop
	The Train Loop
	The Train Loop
	The Train Loop
	The Train Loop
	The Train Loop
	The Train Loop
	The Train Loop
	The Train Loop
	The Train Loop
	The Train Loop
	The Environment
	The Environment
	The Environment
	The Environment
	The Environment
	Terminal States
	Terminal States
	Terminal States
	Terminal States
	Terminal States
	Terminal States
	Terminal States
	Terminal States
	Terminal States
	The Environment
	Environment Libraries
	Environment Libraries
	The Gym Interface
	The Gym Interface
	The Gym Interface
	The Gym Interface
	The Gym Interface
	The Gym Interface
	The Gym Interface
	The Gym Interface
	
	
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	Init
	Init
	The Q Network
	The Q Network
	The Q Network
	The Q Network
	Policy
	Policy
	Policy
	Policy
	Policy
	Policy
	Policy
	Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	Exploration Policy
	
	
	
	Collectors
	Collectors
	Collectors
	Collectors
	Collectors
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Replay Buffers
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Loss Function
	Evaluation
	Summary
	Next Time

