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Review

The discounted return (𝑮)

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑅(𝑠𝑡+1) = ∑

∞
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𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑅(𝑠𝑡+1) = ∑

∞

𝑡=0
𝛾𝑡𝑟𝑡

With a reward of 1 at each timestep and 𝛾 = 0.9

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 = 1 + 0.9 + 0.81 + … =

1
1 − 𝛾

= 10
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The expected discounted return (𝑮𝝅)
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∞
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Transitions and policy are stochastic. Consider uncertainty in the reward.

𝑟𝑡 ∼
⎣
⎢
⎡𝑅(𝑠𝑡+1)⏟

reward fn

state trans. probs
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⎥
⎤

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 9 / 79



Review

𝑟𝑡 ∼
⎣
⎢
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reward fn

state trans. probs
⏞⏞⏞⏞⏞⏞⏞𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)⏟⏟⏟⏟⏟

action probs⎦
⎥
⎤

The expectation turns that distribution into a single number. This tells
us what reward to expect “on average”

𝔼[𝑟𝑡] = ∫
𝑠𝑡+1

∫
𝐴

𝑅(𝑠𝑡+1)⏟
reward fn

state trans. probs
⏞⏞⏞⏞⏞⏞⏞𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡 | 𝑠𝑡)⏟⏟⏟⏟⏟

action probs
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𝐺𝜋 = 𝔼[∑
∞

𝑡=0
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With the expected discounted return, we can define the optimal policy

𝜋∗ = max
𝜋

 𝔼[∑
∞
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2. Derive Q function from 𝑉
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4. Learn to train 𝑄
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𝑉𝜋(𝑠0) = 𝔼[∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Difference between 𝐺𝜋 and 𝑉𝜋 is dependence on 𝑠0

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 15 / 79



Review

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑽
3. Figure out a behavior policy using 𝑄
4. Learn to train 𝑄

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 16 / 79



Review

Factor out first term from the return to introduce a dependence on 𝑎0
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∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

When 𝑉  depends on a specific action, we call it the Q function:

𝑆 × 𝐴 → ℝ

𝑄𝜋(𝑠0, 𝑎0) = 𝔼[𝑟0 | 𝑎0] + 𝔼[∑
∞

𝑡=1
𝛾𝑡𝑟𝑡 | 𝑎𝑡 ∼ 𝜋(𝑠𝑡)]

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 17 / 79



Review

The Plan:
1. Derive the value function 𝑉
2. Derive Q function from 𝑉
3. Figure out a behavior policy using 𝑸
4. Learn to train 𝑄

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 18 / 79



Review

𝜋∗(𝑠) = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎)

In English: Compute Q value for all possible actions and pick the
action with the biggest Q value. Repeat at each timestep.
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𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)
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𝑄(𝑠, 𝑎) = 𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′)

This course is Deep RL, so we need to use a neural network, parameterized by 𝜃

𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)) = 0

Training objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2
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Like much of deep learning, Deep RL has a gap between theory and
practice

Just like neural networks (1943) and backpropagation (1970), the theory
of value functions (1957) and Q learning (1989) has been around for a
long time

Hardware advances and good ML software enabled us to take advantage
of decades of theory. Mnih et al (2015) took Q learning theory and made
it work well with neural networks

Since its inception, Deep RL has added “patches” to combine theory
with deep networks to obtain better and better results
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for update in range(num_updates):
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Deep RL has a training loop similar to the deep learning loop
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The Train Loop

Deep RL has a training loop similar to the deep learning loop

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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The Environment

Main differences with the DL train loop

==>

==>

==>
==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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The Environment

Today: Go through the loop line by line to implement DQN

==>

==>

==>
==>
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theta = Q.init(seed=0)
pi = policy(Q, theta)
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  collected_data = collect_training_data(env, pi)
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  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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The Environment

Instead of loading a static dataset, we collect data from an environment

==> env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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The Environment

The Plan:
1. Terminal states
2. The Gymnasium interface

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 30 / 79



The Environment

The Plan:
1. Terminal states
2. The Gymnasium interface

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 31 / 79



Terminal States

Question: How can we represent
a Mario Bros Game Over screen in
an MDP?
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Terminal States

Question: How can we represent
a Mario Bros Game Over screen in
an MDP?

Answer: We enter a terminal
state that we cannot leave

𝑠terminal

𝑎 = 1

𝑎 = 2
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Terminal States

How do we model the return in these terminal states?

Recall the discounted return

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡

After entering the terminal state at 𝑡 = 𝑛 all future rewards are zero. We
can write the discounted return as

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 ⋅ (𝑡 ≤ 𝑛) = ∑

𝑛

𝑡=0
𝛾𝑡𝑟𝑡
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𝐺 = ∑
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𝑡=0
𝛾𝑡𝑟𝑡 ⋅ (𝑡 ≤ 𝑛) = ∑

𝑛

𝑡=0
𝛾𝑡𝑟𝑡

Many environments introduce the done flag (d) to simplify data
collection and training

(
𝑠0

𝑑0 = 0
𝑠1

𝑑1 = 0
𝑠2

𝑑2 = 0
…
…

𝑠𝑛

𝑑𝑛 = 1)
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Terminal States

𝐺 = ∑
∞

𝑡=0
𝛾𝑡𝑟𝑡 ⋅ (𝑡 ≤ 𝑛) = ∑

𝑛

𝑡=0
𝛾𝑡𝑟𝑡

Many environments introduce the done flag (d) to simplify data
collection and training

(
𝑠0

𝑑0 = 0
𝑠1

𝑑1 = 0
𝑠2

𝑑2 = 0
…
…

𝑠𝑛

𝑑𝑛 = 1)

We call the states from the initial to terminal state an episode
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The Environment

The Plan:
1. Terminal states
2. The Gymnasium interface
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Environment Libraries

The gymnasium library contains many popular test environments
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Environment Libraries

The gymnasium library contains many popular test environments

gymnasium also defines the standard environment interface
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The Gym Interface

Launching environments is very easy

env = gymnasium.make("LunarLander-v2")
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The Gym Interface

Launching environments is very easy

env = gymnasium.make("LunarLander-v2")

What is 𝑆, 𝐴 for LunarLander?

S, A = env.observation_space, env.action_space

Observations are states that are not guaranteed to be Markov. For
LunarLander, they are Markov.
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The Gym Interface
env = gymnasium.make("LunarLander-v2")
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The Gym Interface
env = gymnasium.make("LunarLander-v2")

The environments start “off”. We must reset the environment, which
returns an initial state.

state, _ = env.reset(seed=0)
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The Gym Interface
env = gymnasium.make("LunarLander-v2")

The environments start “off”. We must reset the environment, which
returns an initial state.

state, _ = env.reset(seed=0)

Step the environment in time by feeding an action (transition function
𝑇 )

next_state, reward, terminated, truncated, _ = env.step(action)
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The Gym Interface
env = gymnasium.make("LunarLander-v2")

The environments start “off”. We must reset the environment, which
returns an initial state.

state, _ = env.reset(seed=0)

Step the environment in time by feeding an action (transition function
𝑇 )

next_state, reward, terminated, truncated, _ = env.step(action)

𝑑 = terminated ∨ truncated
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The Gym Interface

You can write your own environments using gymnasium

  class RoboParking(gymnasium.Env):
    observation_space = spaces.Box(
      # x, y, xdot, ydot
      low=(0, 0, -1, -1),
      high=(4, 4, 1, 1),
      dtype=np.float32
    )
    # left, right, forward, backward
    action_space = spaces.Discrete(4)

    def R(self, pos): # R(s')
      # Our goal is 0,0,0,0
      return norm(sensor.state())

    def T(self, action):
      # We don't know the true T
      wheels.apply_torque(action)
      next_state = sensor.state()
      return next_state

    def step(self, action):
      next_state = T(action) # s'
      return (
        next_state,
        R(next_state), # reward R(s')
        norm(next_state) < 0.01 # d
        False, {} # trunc, extra info
      )
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We discussed the environment

==> env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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Next, let us define the deep Q function

==>
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ
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And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We would need to evaluate Q function |𝐴| times for each state
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The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We would need to evaluate Q function |𝐴| times for each state

𝑄(𝑠, 𝑎 = 1)
𝑄(𝑠, 𝑎 = 2)

⋮
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The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We would need to evaluate Q function |𝐴| times for each state

𝑄(𝑠, 𝑎 = 1)
𝑄(𝑠, 𝑎 = 2)

⋮

Inefficient: |𝐴| = 100 means 100 forward passes for each timestep
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The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|
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And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Compute the Q value for all actions in a single forward pass
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The Q Network

Recall the type signature of the Q function 𝑄 : 𝑆 × 𝐴 → ℝ

And recall the optimal policy 𝜋∗(𝑠) = argmax𝑎∈𝐴 𝑄∗(𝑠, 𝑎, 𝜃)

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Compute the Q value for all actions in a single forward pass

𝑄(𝑠, 𝜃) = 𝑄(𝑠, 𝑎 = 1, 𝜃),
𝑄(𝑠, 𝑎 = 2, 𝜃),
⋮
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The Q Network

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|
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The Q Network

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Architecture: 2 layer MLP with hidden size of 256 is sufficient for
standard benchmarks
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The Q Network

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Architecture: 2 layer MLP with hidden size of 256 is sufficient for
standard benchmarks

Q = Sequential(
  Linear(state_size, 256), LeakyReLU(),
  Linear(256, 256), LeakyReLU(),
  Linear(256, action_size)
)
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The Q Network

We instead represent the Q network as

𝑄 : 𝑆 → ℝ|𝐴|

Architecture: 2 layer MLP with hidden size of 256 is sufficient for
standard benchmarks

Q = Sequential(
  Linear(state_size, 256), LayerNorm(), LeakyReLU(),
  Linear(256, 256), LayerNorm(), LeakyReLU(),
  Linear(256, action_size)
)
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The Q Network

For states with structure (e.g., pixels), prepend encoders to Q
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Init

Done with the Q function architecture, let’s discuss init

==>
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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The Q Network

Not much to say for parameter initialization
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The Q Network

Not much to say for parameter initialization

Tip: Initialize the final layer of your Q function to output values near 0
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The Q Network

Not much to say for parameter initialization

Tip: Initialize the final layer of your Q function to output values near 0

nn.init.normal(std=1e-3, bias=0)
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The Q Network

Not much to say for parameter initialization

Tip: Initialize the final layer of your Q function to output values near 0

nn.init.normal(std=1e-3, bias=0)

Prevents Q value overestimation (to be discussed in depth later)
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Policy

Done with init, let’s discuss policy 𝜋

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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Policy

Done with init, let’s discuss policy 𝜋

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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Policy

Recall the policy 𝜋 : 𝑆 → Δ𝐴
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Policy

Recall the policy 𝜋 : 𝑆 → Δ𝐴

In practice, we usually have two policies
1. The optimal policy we are trying to learn (𝜋)
2. An exploration policy (𝝅𝑬) for collecting training data

Why do we need 𝜋𝐸?
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Policy

Recall the policy 𝜋 : 𝑆 → Δ𝐴

In practice, we usually have two policies
1. The optimal policy we are trying to learn (𝜋)
2. An exploration policy (𝝅𝑬) for collecting training data

Why do we need 𝜋𝐸?

𝑠1

𝑠0

𝑠1

𝑠2

𝑠2 …

…

𝑎0 = 1

𝑎0 = 2
𝑎1

𝑎1
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Exploration Policy

We use the exploration policy (𝝅𝑬) to explore and collect data
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Exploration Policy

We use the exploration policy (𝝅𝑬) to explore and collect data

We will use our collected data to train the Q function. What properties
should our collected data have?
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Exploration Policy

We use the exploration policy (𝝅𝑬) to explore and collect data

We will use our collected data to train the Q function. What properties
should our collected data have?

1. To ensure 𝑄 is accurate everywhere, take every possible action in
every possible state
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Exploration Policy

We use the exploration policy (𝝅𝑬) to explore and collect data

We will use our collected data to train the Q function. What properties
should our collected data have?

1. To ensure 𝑄 is accurate everywhere, take every possible action in
every possible state

Given these requirements, we cannot do better than random exploration

𝜋𝐸(𝑠) = 𝒰(𝐴)
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Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Question: Are there any downsides to this exploration policy?
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Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Question: Are there any downsides to this exploration policy?

Answer: It could take a really, really long time
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Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Alternative: Bias the policy towards states with known large Q values
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Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Alternative: Bias the policy towards states with known large Q values

One approach is the 𝝐-greedy policy
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Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Alternative: Bias the policy towards states with known large Q values

One approach is the 𝝐-greedy policy

𝜖 ∈ [0, 1]
𝑢 ∼ 𝒰[0, 1]

𝜋𝐸(𝑠) = {
𝒰(𝐴) if 𝑢 ≤ 𝜖
argmax𝑎∈𝐴 𝑄(𝑠, 𝑎) if 𝑢 > 𝜖
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Exploration Policy

𝜋𝐸(𝑠) = 𝒰(𝐴)

Alternative: Bias the policy towards states with known large Q values

One approach is the 𝝐-greedy policy

𝜖 ∈ [0, 1]
𝑢 ∼ 𝒰[0, 1]

𝜋𝐸(𝑠) = {
𝒰(𝐴) if 𝑢 ≤ 𝜖
argmax𝑎∈𝐴 𝑄(𝑠, 𝑎) if 𝑢 > 𝜖

This approach is simple and works surprisingly well in practice
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Exploration Policy
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Exploration Policy

Explore promising areas with large Q values more often and as 𝑡 → ∞,
explore all state/action tuples
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Exploration Policy

Explore promising areas with large Q values more often and as 𝑡 → ∞,
explore all state/action tuples

Question: Any downsides to the 𝜀-greedy approach?
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Exploration Policy

Question: Any downsides to the 𝜀-greedy approach?

Answer: Not independently distributed. The state/action distribution
will be biased by the Q function. Seems to be ignored in practice?
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Exploration Policy

Summary: Maintain two policies
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Summary: Maintain two policies

𝜋: The policy that approximates 𝜋∗
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Exploration Policy

Summary: Maintain two policies

𝜋: The policy that approximates 𝜋∗

𝜋𝐸 : A stochastic policy used for exploring the environment and
collecting data
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Let us make a small change to the pseudocode

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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Now we have two policies, one for collection and one for evaluation

==>

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi_e)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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Let’s move onto data collection

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi_e)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 56 / 79



Collectors

We must interact with the MDP to collect training data
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Collectors

We must interact with the MDP to collect training data

Recall the Q learning objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ argmax
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2
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Collectors

We must interact with the MDP to collect training data

Recall the Q learning objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ argmax
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

Many algorithms train using a transition tuple (s, a, r, s’, d)
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Collectors

Collecting transitions correctly is deceptively tricky (off by one errors)
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Collectors

Collecting transitions correctly is deceptively tricky (off by one errors)

states, next_states, rewards, actions, dones = [], [], ...
s, _ = env.reset(seed=0)
d = False
while not d:
  a = pi_e(s, theta)
  next_s, r, trunc, term, _ = env.step(action) # r = R(s')
  d = trunc or term
  states.append(s), next_states.append(next_s), rewards...
  s = next_s
# n+1 states total, but each list should be len n
episode = (states, next_states, rewards, actions, dones)
return episode
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Replay Buffers

We call the dataset a replay buffer (𝓓)
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(𝑠1, 𝑎1, 𝑟1, 𝑠′

1, 𝑑1)
⋮ ⎦

⎥⎥
⎤
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⎣
⎢⎢
⎡(𝑠0, 𝑎0, 𝑟0, 𝑠′

0, 𝑑0)
(𝑠1, 𝑎1, 𝑟1, 𝑠′

1, 𝑑1)
⋮ ⎦

⎥⎥
⎤

  buffer = []
  transitions = [(s_0, a_0, r_0, next_s_0), ...]
  buffer += transitions
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Replay Buffers

We call the dataset a replay buffer (𝓓)

𝒟 =

⎣
⎢⎢
⎡(𝑠0, 𝑎0, 𝑟0, 𝑠′

0, 𝑑0)
(𝑠1, 𝑎1, 𝑟1, 𝑠′

1, 𝑑1)
⋮ ⎦

⎥⎥
⎤

  buffer = []
  transitions = [(s_0, a_0, r_0, next_s_0), ...]
  buffer += transitions

Note: We often enforce a max size of 𝒟 using a ring buffer
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Replay Buffers

We populated the dataset, now let’s sample from it

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi_e)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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Replay Buffers

We sample training data from 𝒟
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We will call the train data our training batch ℬ

ℬ ∼ [𝒰(𝒟), …, 𝒰(𝒟)]
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Replay Buffers

We sample training data from 𝒟

We will call the train data our training batch ℬ

ℬ ∼ [𝒰(𝒟), …, 𝒰(𝒟)]

ℬ = [(𝑠𝑗, 𝑎𝑗, 𝑟𝑗, 𝑠′
𝑗, 𝑑𝑗), …, (𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠′

𝑘, 𝑑𝑘)]

Randomly sampling old data helps mitigate correlations between data,
improving training stability
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Loss Function

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi_e)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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Loss Function

We make a few modifications to the Q learning objective to improve
performance
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We make a few modifications to the Q learning objective to improve
performance
1. Early termination using 𝒅
2. Target networks
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Loss Function

Recall the standard Q learning objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2
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2

Rather than learn to output 0 at terminal states, we modify the objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
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𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

Rather than learn to output 0 at terminal states, we modify the objective

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
{𝑎′∈𝐴}

𝑄(𝑠′, 𝑎′, 𝜃)))
2

For terminal transitions, this reduces to

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − 𝑟)2
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Loss Function

We make a few modifications to the Q learning objective to improve
performance
1. Early termination using 𝑑
2. Target networks
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Loss Function

Traditional Q learning used a table

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 1 3 2
𝑎 = 1 7 4 5
𝑎 = 2 1 0 0
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Loss Function

Traditional Q learning used a table

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 1 3 2
𝑎 = 1 7 4 5
𝑎 = 2 1 0 0

Updates are very well defined

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 5 3 2
𝑎 = 1 7 4 5
𝑎 = 2 1 0 0
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Loss Function

Traditional Q learning used a table

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 1 3 2
𝑎 = 1 7 4 5
𝑎 = 2 1 0 0

Updates are very well defined

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 5 3 2
𝑎 = 1 7 4 5
𝑎 = 2 1 0 0

Neural networks are different.
Increasing a single (𝑠 = 0, 𝑎 = 0)
entry will often perturb the Q
value for all states and actions.

𝑠 = 0 𝑠 = 1 𝑠 = 2
𝑎 = 0 5 4 4
𝑎 = 1 9 5 5
𝑎 = 2 4 0 0
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Loss Function

These perturbations 𝜀 ripple through the Q recursion, with the max
operator resulting in overestimation

𝑄(𝑠, 𝑎, 𝜽′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜃) + 𝜀𝜃]
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Compounding pertubations combined with the max operator result in
exploding Q values (i.e., 𝑄(⋅, ⋅) = ∞)
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Loss Function

Compounding pertubations combined with the max operator result in
exploding Q values (i.e., 𝑄(⋅, ⋅) = ∞)

Solution 1: Constrained optimization of neural networks (hard)
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Loss Function

Solution 3: Surrogate target network to break recurrence (easy)

Initialize target parameters 𝜓 = 𝜃

𝑄(𝑠, 𝑎, 𝜃′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓]
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Loss Function

Solution 3: Surrogate target network to break recurrence (easy)

Initialize target parameters 𝜓 = 𝜃

𝑄(𝑠, 𝑎, 𝜃′) ← 𝑟 + 𝛾 max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓]

𝑄(𝑠, 𝑎, 𝜃″) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓])

𝑄(𝑠, 𝑎, 𝜃‴) ← 𝑟 + 𝛾(max
𝑎′∈𝐴

[𝑄(𝑠′, 𝑎′, 𝜓) + 𝜀𝜓])

After a while, set 𝜓 = 𝜃 again
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Loss Function

Behold, the combination of early termination and target networks

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 74 / 79



Loss Function

Behold, the combination of early termination and target networks
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𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)

𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)) = 0
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Loss Function

Behold, the combination of early termination and target networks

𝑄(𝑠, 𝑎, 𝜃) = 𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)

𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)) = 0

The standard objective for DQN is

min
𝜃

(𝑄(𝑠, 𝑎, 𝜃) − (𝑟 + ¬𝒅 ⋅ 𝛾 ⋅ max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′, 𝝍)))
2

Steven Morad and Carl Henrik Ek R255: Deep Reinforcement Learning Lecture 3: Deep Q Networks 74 / 79



Loss Function

We need to make a few small updates given our new objective

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi_e)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, train_data)
  metrics = evaluate(env, pi)
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Loss Function

Initialize target parameters, and use target params in loss function

==>

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta, psi = Q.init(seed=0), Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi_e)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, psi, train_data)
  metrics = evaluate(env, pi)
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Evaluation

Same as collect_training_data but use 𝜋 not 𝜋𝐸

==>

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta, psi = Q.init(seed=0), Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
  collected_data = collect_training_data(env, pi_e)
  dataset += collected_data
  train_data = dataset.sample()
  theta = train(Q, theta, psi, train_data)
  metrics = evaluate(env, pi)
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Summary

• Review
• State of the field
• Implement Deep Q Networks (DQN) (Mnih et al.)
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Next Time

• Zach, Riccardo, Grace, Dylan, and Saksham will be lecturing
1. Give us a hint on the topic!
2. Turn in reports (email is best)
3. 10 min presentation + 5 min questions and discussion

• Next lecture is not recorded (reduce anxiety)

• Miniproject handout
• Moodle says due 22 March 16:00
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