

Deep Q Networks

Deep Reinforcement Learning

University of Cambridge

• Review

- Review
- State of the field

- Review
- State of the field
- Implement Deep Q Networks (DQN) (Mnih et al.)

- Review
- State of the field
- Implement Deep Q Networks (DQN) (Mnih et al.)

Review:

• Finished up MDPs

- Finished up MDPs
- The return and optimal policies

- Finished up MDPs
- The return and optimal policies
- Deep Q learning

- Finished up MDPs
- The discounted return and optimal policies
- Deep Q learning

- Finished up MDPs
- The return and optimal policies
- Deep Q learning

The **discounted return** (G)

$$G = \sum_{t=0}^{\infty} \gamma^t R(s_{t+1}) = \sum_{t=0}^{\infty} \gamma^t r_t$$

The discounted return (G)

$$G = \sum_{t=0}^{\infty} \gamma^t R(s_{t+1}) = \sum_{t=0}^{\infty} \gamma^t r_t$$

With a reward of 1 at each timestep and $\gamma = 0.9$

$$G = \sum_{t=0}^{\infty} \gamma^t r_t = 1 + 0.9 + 0.81 + \ldots = \frac{1}{1 - \gamma} = 10$$

The expected discounted return (G_{π})

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t ~|~ a_t \sim \pi(s_t)\right]$$

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Transitions and policy are stochastic. Consider uncertainty in the reward.

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Transitions and policy are stochastic. Consider uncertainty in the reward.

$$r_t \sim \left[\underbrace{\frac{R(s_{t+1})}{T(s_{t+1} \mid s_t, a_t)}}_{\text{reward fn}} \overline{T(s_{t+1} \mid s_t, a_t)} \underbrace{\pi(a_t \mid s_t)}_{\text{action probs}}\right]$$

The **expectation** turns that distribution into a single number. This tells us what reward to expect "on average"

$$\mathbb{E}[r_t] = \int_{s_{t+1}} \int_A \underbrace{\frac{R(s_{t+1})}_{\text{reward fn}} \overline{T(s_{t+1} \mid s_t, a_t)}}_{\text{reward fn}} \underbrace{\frac{\pi(a_t \mid s_t)}{\pi(a_t \mid s_t)}}_{\text{action probs}}$$

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t ~|~ a_t \sim \pi(s_t)\right]$$

With the expected discounted return, we can define the optimal policy

$$\pi_* = \max_{\pi} \ \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

- Finished up MDPs
- The return and optimal policies
- Deep Q learning

The Plan:

- 1. Derive the value function ${\cal V}$
- 2. Derive Q function from V
- 3. Figure out a behavior policy using ${\cal Q}$
- 4. Learn to train Q

The Plan:

- 1. Derive the value function V
- 2. Derive Q function from V
- 3. Figure out a behavior policy using ${\cal Q}$
- 4. Learn to train Q

With the expected return

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

We derived the Value Function (V_{π}) $V_{\pi}: S \to \mathbb{R}$

With the expected return

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

We derived the Value Function (V_{π}) $V_{\pi}: S \to \mathbb{R}$

$$V_{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

With the expected return

$$G_{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

We derived the Value Function (V_{π}) $V_{\pi}: S \to \mathbb{R}$

$$V_{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Difference between G_{π} and V_{π} is dependence on s_0

The Plan:

- 1. Derive the value function ${\cal V}$
- 2. Derive Q function from V
- 3. Figure out a behavior policy using ${\cal Q}$
- 4. Learn to train Q

Factor out first term from the return to introduce a dependence on a_0

$$V_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

Factor out first term from the return to introduce a dependence on a_0

$$V_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

When *V* depends on a specific action, we call it the **Q** function:

$$S \times A \to \mathbb{R}$$

$$Q_{\pi}(s_0, a_0) = \mathbb{E}[r_0 \mid a_0] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t r_t \mid a_t \sim \pi(s_t)\right]$$

The Plan:

- 1. Derive the value function ${\cal V}$
- 2. Derive Q function from V
- 3. Figure out a behavior policy using Q
- 4. Learn to train Q

$$\pi_*(s) = \operatorname*{argmax}_{a \in A} Q_*(s,a)$$

In English: Compute Q value for all possible actions and pick the action with the biggest Q value. Repeat at each timestep.

The Plan:

- 1. Derive the value function ${\cal V}$
- 2. Derive Q function from V
- 3. Figure out a behavior policy using ${\cal Q}$
- 4. Learn to train Q

$$Q(s,a) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a')$$

$$Q(s,a) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a')$$

This course is **Deep** RL, so we need to use a neural network, parameterized by θ

$$Q(s,a) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a')$$

This course is **Deep** RL, so we need to use a neural network, parameterized by θ

$$Q(s,a,\theta) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a',\theta)$$

$$Q(s,a) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a')$$

This course is **Deep** RL, so we need to use a neural network, parameterized by θ

$$Q(s, a, \theta) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s', a', \theta)$$

$$Q(s,a,\theta) - \left(r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a',\theta)\right) = 0$$

$$Q(s,a) = r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a')$$

This course is **Deep** RL, so we need to use a neural network, parameterized by θ

$$Q(s,a,\theta) - \left(r + \gamma \cdot \max_{\{a' \in A\}} Q(s',a',\theta)\right) = 0$$

Training objective

$$\min_{\theta} \left(Q(s, a, \theta) - \left(r + \gamma \cdot \max_{\{a' \in A\}} Q(s', a', \theta) \right) \right)^2$$

- Review
- State of the field
- Implement Deep Q Networks (DQN) (Mnih et al.)

Deep RL

Like much of deep learning, Deep RL has a gap between theory and practice
Deep RL

Like much of deep learning, Deep RL has a gap between theory and practice

Just like neural networks (1943) and backpropagation (1970), the theory of value functions (1957) and Q learning (1989) has been around for a long time

Deep RL

Like much of deep learning, Deep RL has a gap between theory and practice

Just like neural networks (1943) and backpropagation (1970), the theory of value functions (1957) and Q learning (1989) has been around for a long time

Hardware advances and good ML software enabled us to take advantage of decades of theory. Mnih et al (2015) took Q learning theory and made it work well with neural networks

Deep RL

Like much of deep learning, Deep RL has a gap between theory and practice

Just like neural networks (1943) and backpropagation (1970), the theory of value functions (1957) and Q learning (1989) has been around for a long time

Hardware advances and good ML software enabled us to take advantage of decades of theory. Mnih et al (2015) took Q learning theory and made it work well with neural networks

Since its inception, Deep RL has added "patches" to combine theory with deep networks to obtain better and better results

Agenda

- Review
- State of the field
- Implement Deep Q Networks (DQN) (Mnih et al.)

```
dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional
```

```
for update in range(num_updates):
    train_data = dataset.sample()
    theta = train(model, theta, train_data) # Functional
    metrics = evaluate(model, theta, dataset.val set)
```

```
==> dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional
```

```
for update in range(num_updates):
    train_data = dataset.sample()
    theta = train(model, theta, train_data) # Functional
    metrics = evaluate(model, theta, dataset.val set)
```

Those familiar with deep learning know of the "training loop"

dataset = load_dataset()

==> model = nn.Module(dataset.x.size, dataset.y.size)
 theta = model.init(seed=0) # Functional

for update in range(num_updates):
 train_data = dataset.sample()
 theta = train(model, theta, train_data) # Functional
 metrics = evaluate(model, theta, dataset.val set)

```
dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
==> theta = model.init(seed=0) # Functional
```

```
for update in range(num_updates):
    train_data = dataset.sample()
    theta = train(model, theta, train_data) # Functional
    metrics = evaluate(model, theta, dataset.val_set)
```

```
dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional
```

```
==> for update in range(num_updates):
    train_data = dataset.sample()
    theta = train(model, theta, train_data) # Functional
    metrics = evaluate(model, theta, dataset.val_set)
```

```
dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional
```

```
for update in range(num_updates):
    train_data = dataset.sample()
    theta = train(model, theta, train_data) # Functional
    metrics = evaluate(model, theta, dataset.val_set)
```

```
dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional
```

```
for update in range(num_updates):
    train_data = dataset.sample()
==> theta = train(model, theta, train_data) # Functional
    metrics = evaluate(model, theta, dataset.val_set)
```

Those familiar with deep learning know of the "training loop"

```
dataset = load_dataset()
model = nn.Module(dataset.x.size, dataset.y.size)
theta = model.init(seed=0) # Functional
```

```
for update in range(num_updates):
    train_data = dataset.sample()
    theta = train(model, theta, train_data) # Functional
    metrics = evaluate(model, theta, dataset.val set)
```

==>

Deep RL has a training loop similar to the deep learning loop

Deep RL has a training loop similar to the deep learning loop

```
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

Main differences with the DL train loop

```
==> env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
==> pi = policy(Q, theta)
```

```
for update in range(num_updates):
```

```
==> collected_data = collect_training_data(env, pi)
==> dataset += collected_data
train_data = dataset.sample()
theta = train(Q, theta, train_data)
metrics = evaluate(env, pi)
```

Today: Go through the loop line by line to implement DQN

```
==> env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
==> pi = policy(Q, theta)
```

for update in range(num_updates):

=> collected_data = collect_training_data(env, pi)
=>> dataset += collected_data
train_data = dataset.sample()
theta = train(Q, theta, train_data)
metrics = evaluate(env, pi)

Instead of loading a static dataset, we collect data from an environment

```
==> env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

The Plan:

- 1. Terminal states
- 2. The Gymnasium interface

The Plan:

- 1. Terminal states
- 2. The Gymnasium interface

Question: How can we represent a Mario Bros Game Over screen in an MDP?

Question: How can we represent a Mario Bros Game Over screen in an MDP?

Answer: We enter a **terminal state** that we cannot leave

How do we model the return in these terminal states?

How do we model the return in these terminal states?

Recall the discounted return

$$G = \sum_{t=0}^{\infty} \gamma^t r_t$$

How do we model the return in these terminal states?

Recall the discounted return

$$G = \sum_{t=0}^{\infty} \gamma^t r_t$$

After entering the terminal state at t = n all future rewards are zero. We can write the discounted return as

$$G = \sum_{t=0}^\infty \gamma^t r_t \cdot (t \le n) = \sum_{t=0}^n \gamma^t r_t$$

$$G = \sum_{t=0}^\infty \gamma^t r_t \cdot (t \le n) = \sum_{t=0}^n \gamma^t r_t$$

$$G = \sum_{t=0}^\infty \gamma^t r_t \cdot (t \le n) = \sum_{t=0}^n \gamma^t r_t$$

Many environments introduce the **done flag (d)** to simplify data collection and training

$$G = \sum_{t=0}^\infty \gamma^t r_t \cdot (t \le n) = \sum_{t=0}^n \gamma^t r_t$$

Many environments introduce the **done flag (d)** to simplify data collection and training

$$\begin{pmatrix} s_0 & s_1 & s_2 & \dots & s_n \\ d_0 = 0 & d_1 = 0 & d_2 = 0 & \dots & d_n = 1 \end{pmatrix}$$

$$G = \sum_{t=0}^\infty \gamma^t r_t \cdot (t \le n) = \sum_{t=0}^n \gamma^t r_t$$

Many environments introduce the **done flag (d)** to simplify data collection and training

$$\begin{pmatrix} s_0 & s_1 & s_2 & \dots & s_n \\ d_0 = 0 & d_1 = 0 & d_2 = 0 & \dots & d_n = 1 \end{pmatrix}$$

We call the states from the initial to terminal state an **episode**

The Plan:

- 1. Terminal states
- 2. The Gymnasium interface

Environment Libraries

The gymnasium library contains many popular test environments

Environment Libraries

The gymnasium library contains many popular test environments

gymnasium also defines the standard environment interface

Launching environments is very easy

env = gymnasium.make("LunarLander-v2")

Launching environments is very easy

- env = gymnasium.make("LunarLander-v2")
- What is S, A for LunarLander?
- S, A = env.observation_space, env.action_space

Launching environments is very easy

env = gymnasium.make("LunarLander-v2")

What is S, A for LunarLander?

S, A = env.observation_space, env.action_space

Observations are states that are not guaranteed to be Markov. For LunarLander, they are Markov.

env = gymnasium.make("LunarLander-v2")
```
env = gymnasium.make("LunarLander-v2")
```

The environments start "off". We must reset the environment, which returns an initial state.

state, _ = env.reset(seed=0)

```
env = gymnasium.make("LunarLander-v2")
```

The environments start "off". We must reset the environment, which returns an initial state.

state, _ = env.reset(seed=0)

Step the environment in time by feeding an action (transition function T)

next_state, reward, terminated, truncated, _ = env.step(action)

```
env = gymnasium.make("LunarLander-v2")
```

The environments start "off". We must reset the environment, which returns an initial state.

state, _ = env.reset(seed=0)

Step the environment in time by feeding an action (transition function T)

next_state, reward, terminated, truncated, _ = env.step(action) $d = \text{terminated} \lor \text{truncated}$

You can write your own environments using gymnasium

```
class RoboParking(gymnasium.Env):
  observation_space = spaces.Box(
    # x, y, xdot, ydot
    low = (0, 0, -1, -1),
    high=(4, 4, 1, 1),
    dtype=np.float32
  # left, right, forward, backward
  action space = spaces.Discrete(4)
  def R(self, pos): # R(s')
```

```
# Our goal is 0,0,0,0
return norm(sensor.state())
```

def T(self, action):
 # We don't know the true T
 wheels.apply_torque(action)
 next_state = sensor.state()
 return next_state

```
def step(self, action):
    next_state = T(action) # s'
    return (
        next_state,
        R(next_state), # reward R(s')
        norm(next_state) < 0.01 # d
        False, {} # trunc, extra info</pre>
```

We discussed the environment

```
==> env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi = policy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

Next, let us define the deep Q function

```
env = LunarLander()
```

=> Q = nn.Module(env.state_space, env.action_space)
 theta = Q.init(seed=0)
 pi = policy(Q, theta)

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

Recall the type signature of the Q function $Q: S \times A \rightarrow \mathbb{R}$

Recall the type signature of the Q function $Q: S \times A \to \mathbb{R}$ And recall the optimal policy $\pi_*(s) = \operatorname{argmax}_{a \in A} Q_*(s, a, \theta)$

Recall the type signature of the Q function $Q: S \times A \to \mathbb{R}$ And recall the optimal policy $\pi_*(s) = \operatorname{argmax}_{a \in A} Q_*(s, a, \theta)$ We would need to evaluate Q function |A| times for each state

Recall the type signature of the Q function $Q: S \times A \to \mathbb{R}$ And recall the optimal policy $\pi_*(s) = \operatorname{argmax}_{a \in A} Q_*(s, a, \theta)$ We would need to evaluate Q function |A| times for each state

 $egin{array}{ll} Q(s,a=1) \ Q(s,a=2) \ & \vdots \end{array}$

Recall the type signature of the Q function $Q: S \times A \to \mathbb{R}$ And recall the optimal policy $\pi_*(s) = \operatorname{argmax}_{a \in A} Q_*(s, a, \theta)$ We would need to evaluate Q function |A| times for each state

$$egin{array}{ll} Q(s,a=1) \ Q(s,a=2) \ dots \end{array}$$

Inefficient: |A| = 100 means 100 forward passes for each timestep

Recall the type signature of the Q function $Q: S \times A \to \mathbb{R}$ And recall the optimal policy $\pi_*(s) = \operatorname{argmax}_{a \in A} Q_*(s, a, \theta)$

We instead represent the Q network as

 $Q:S\to \mathbb{R}^{|A|}$

Recall the type signature of the Q function $Q: S \times A \to \mathbb{R}$ And recall the optimal policy $\pi_*(s) = \operatorname{argmax}_{a \in A} Q_*(s, a, \theta)$ We instead represent the Q network as

 $Q:S\to \mathbb{R}^{|A|}$

Compute the Q value for all actions in a single forward pass

Recall the type signature of the Q function $Q: S \times A \to \mathbb{R}$ And recall the optimal policy $\pi_*(s) = \operatorname{argmax}_{a \in A} Q_*(s, a, \theta)$ We instead represent the Q network as

 $Q:S\to \mathbb{R}^{|A|}$

Compute the Q value for all actions in a single forward pass

$$egin{aligned} Q(s, heta) &= Q(s, a = 1, heta), \ Q(s, a = 2, heta), \ &\vdots \end{aligned}$$

We instead represent the Q network as

 $Q:S\to \mathbb{R}^{|A|}$

We instead represent the Q network as

$$Q:S\to \mathbb{R}^{|A|}$$

Architecture: 2 layer MLP with hidden size of 256 is sufficient for standard benchmarks

We instead represent the Q network as

 $Q:S\to \mathbb{R}^{|A|}$

Architecture: 2 layer MLP with hidden size of 256 is sufficient for standard benchmarks

```
Q = Sequential(
  Linear(state_size, 256), LeakyReLU(),
  Linear(256, 256), LeakyReLU(),
  Linear(256, action_size)
```

We instead represent the Q network as

 $Q:S\to \mathbb{R}^{|A|}$

Architecture: 2 layer MLP with hidden size of 256 is sufficient for standard benchmarks

```
Q = Sequential(
```

Linear(state_size, 256), LayerNorm(), LeakyReLU(), Linear(256, 256), LayerNorm(), LeakyReLU(), Linear(256, action_size)

For states with structure (e.g., pixels), prepend encoders to Q

For states with structure (e.g., pixels), prepend encoders to Q

Init

Done with the Q function architecture, let's discuss init

```
env = LunarLander()
```

=> Q = nn.Module(env.state_space, env.action_space)
 theta = Q.init(seed=0)
 pi = policy(Q, theta)

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

Init

Done with the Q function architecture, let's discuss init

```
env = LunarLander()
      Q = nn.Module(env.state space, env.action space)
=> theta = Q.init(seed=0)
      pi = policy(Q, theta)
      for update in range(num updates):
        collected data = collect training data(env, pi)
        dataset += collected data
        train data = dataset.sample()
        theta = train(Q, theta, train data)
        metrics = evaluate(env, pi)
```

Not much to say for parameter initialization

Not much to say for parameter initialization

Tip: Initialize the final layer of your Q function to output values near 0

Not much to say for parameter initialization

Tip: Initialize the final layer of your Q function to output values near 0

nn.init.normal(std=1e-3, bias=0)

Not much to say for parameter initialization

Tip: Initialize the final layer of your Q function to output values near 0

nn.init.normal(std=1e-3, bias=0)

Prevents Q value overestimation (to be discussed in depth later)

Done with init, let's discuss policy π

```
env = LunarLander()
     Q = nn.Module(env.state space, env.action space)
    theta = Q.init(seed=0)
==>
      pi = policy(Q, theta)
      for update in range(num updates):
        collected data = collect training data(env, pi)
        dataset += collected data
        train data = dataset.sample()
        theta = train(Q, theta, train data)
        metrics = evaluate(env, pi)
```

Done with init, let's discuss policy π

```
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
==> pi = policy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

Recall the policy $\pi: S \to \Delta A$

Recall the policy $\pi: S \to \Delta A$

In practice, we usually have two policies

Recall the policy $\pi: S \to \Delta A$

In practice, we usually have two policies

1. The optimal policy we are trying to learn (π)

Recall the policy $\pi: S \to \Delta A$

In practice, we usually have two policies

- 1. The optimal policy we are trying to learn (π)
- 2. An **exploration policy** (π_E) for collecting training data

Recall the policy $\pi: S \to \Delta A$

In practice, we usually have two policies

- 1. The optimal policy we are trying to learn (π)
- 2. An **exploration policy** (π_E) for collecting training data

Why do we need π_E ?

Recall the policy $\pi: S \to \Delta A$

In practice, we usually have two policies

- 1. The optimal policy we are trying to learn (π)
- 2. An **exploration policy** (π_E) for collecting training data

Why do we need π_E ?

Exploration Policy

We use the **exploration policy** (π_E) to explore and collect data

Exploration Policy

We use the **exploration policy** (π_E) to explore and collect data

We will use our collected data to train the Q function. What properties should our collected data have?
We use the **exploration policy** (π_E) to explore and collect data

We will use our collected data to train the Q function. What properties should our collected data have?

1. To ensure Q is accurate everywhere, take every possible action in every possible state

We use the **exploration policy** (π_E) to explore and collect data

We will use our collected data to train the Q function. What properties should our collected data have?

1. To ensure Q is accurate everywhere, take every possible action in every possible state

Given these requirements, we cannot do better than random exploration

 $\pi_E(s) = \mathcal{U}(A)$

$$\pi_E(s) = \mathcal{U}(A)$$

Question: Are there any downsides to this exploration policy?

$$\pi_E(s) = \mathcal{U}(A)$$

Question: Are there any downsides to this exploration policy?

Answer: It could take a really, really long time

$$\pi_E(s) = \mathcal{U}(A)$$

Question: Are there any downsides to this exploration policy?

Answer: It could take a really, really long time

$$\pi_E(s) = \mathcal{U}(A)$$

Alternative: Bias the policy towards states with known large Q values

$$\pi_E(s) = \mathcal{U}(A)$$

Alternative: Bias the policy towards states with known large Q values

$$\pi_E(s) = \mathcal{U}(A)$$

Alternative: Bias the policy towards states with known large Q values

One approach is the ϵ -greedy policy

$$\pi_E(s) = \mathcal{U}(A)$$

Alternative: Bias the policy towards states with known large Q values

One approach is the ϵ -greedy policy

$$\begin{split} \epsilon \in [0,1] \\ u \sim \mathcal{U}[0,1] \\ \pi_E(s) = \begin{cases} \mathcal{U}(A) \text{ if } u \leq \epsilon \\ \operatorname{argmax}_{a \in A} Q(s,a) \text{ if } u > \epsilon \end{cases} \end{split}$$

$$\pi_E(s) = \mathcal{U}(A)$$

Alternative: Bias the policy towards states with known large Q values

One approach is the ϵ -greedy policy

$$\begin{split} \epsilon \in [0,1] \\ u \sim \mathcal{U}[0,1] \\ \pi_E(s) = \begin{cases} \mathcal{U}(A) \text{ if } u \leq \epsilon \\ \arg\max_{a \in A} Q(s,a) \text{ if } u > \epsilon \end{cases} \end{split}$$

This approach is simple and works surprisingly well in practice

Explore promising areas with large Q values more often and as $t \to \infty$, explore all state/action tuples

Explore promising areas with large Q values more often and as $t \to \infty$, explore all state/action tuples

Question: Any downsides to the ε -greedy approach?

Question: Any downsides to the ε -greedy approach?

Answer: Not independently distributed. The state/action distribution will be biased by the Q function. Seems to be ignored in practice?

Summary: Maintain two policies

Summary: Maintain two policies

 π : The policy that approximates π_*

Summary: Maintain two policies

 π : The policy that approximates π_*

 $\pi_E: \mathbf{A}$ stochastic policy used for exploring the environment and collecting data

Let us make a small change to the pseudocode

```
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
==> pi = policy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

Now we have two policies, one for collection and one for evaluation

```
env = LunarLander()
```

Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)

=> pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi_e)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

==>

Let's move onto data collection

env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

We must interact with the MDP to collect training data

We must interact with the MDP to collect training data

Recall the Q learning objective

$$\min_{\theta} \left(Q(\underline{s},\underline{a},\theta) - \left(\underline{r} + \gamma \cdot \operatorname*{argmax}_{\{a' \in A\}} Q(\underline{s'},a',\theta) \right) \right)^2$$

We must interact with the MDP to collect training data

Recall the Q learning objective

$$\min_{\theta} \left(Q(\underline{s}, \underline{a}, \theta) - \left(\underline{r} + \gamma \cdot \operatorname*{argmax}_{\{a' \in A\}} Q(\underline{s'}, a', \theta) \right) \right)^2$$

Many algorithms train using a transition tuple (s, a, r, s', d)

Collecting transitions correctly is deceptively tricky (off by one errors)

Collecting transitions correctly is deceptively tricky (off by one errors)

```
states, next states, rewards, actions, dones = [], [], ...
s, = env.reset(seed=0)
d = False
while not d:
 a = pi e(s, theta)
  next_s, r, trunc, term, = env.step(action) # r = R(s')
  d = trunc or term
  states.append(s), next states.append(next s), rewards...
  s = next s
# n+1 states total, but each list should be len n
episode = (states, next states, rewards, actions, dones)
return episode
```

We call the dataset a **replay buffer** (\mathcal{D})

We call the dataset a **replay buffer** (\mathcal{D})

$$\mathcal{D} = \begin{bmatrix} (s_0, a_0, r_0, s_0', d_0) \\ (s_1, a_1, r_1, s_1', d_1) \\ \vdots \end{bmatrix}$$

We call the dataset a **replay buffer** (\mathcal{D})

$$\mathcal{D} = \begin{bmatrix} (s_0, a_0, r_0, s_0', d_0) \\ (s_1, a_1, r_1, s_1', d_1) \\ \vdots \end{bmatrix}$$

We call the dataset a **replay buffer** (\mathcal{D})

$$\mathcal{D} = \begin{bmatrix} (s_0, a_0, r_0, s_0', d_0) \\ (s_1, a_1, r_1, s_1', d_1) \\ \vdots \end{bmatrix}$$

Note: We often enforce a max size of $\mathcal D$ using a ring buffer

We populated the dataset, now let's sample from it

```
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi_e)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

==>

We populated the dataset, now let's sample from it

```
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi_e)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

==>

We sample training data from ${\mathcal D}$

We sample training data from ${\mathcal D}$

We will call the train data our training batch ${\mathcal B}$

 $\mathcal{B} \sim [\mathcal{U}(\mathcal{D}), ..., \mathcal{U}(\mathcal{D})]$

We sample training data from ${\mathcal D}$

We will call the train data our training batch ${\mathcal B}$

 $\mathcal{B} \sim [\mathcal{U}(\mathcal{D}), ..., \mathcal{U}(\mathcal{D})]$

$$\mathcal{B} = \left[\left(s_j, a_j, r_j, s_j', d_j\right), ..., \left(s_k, a_k, r_k, s_k', d_k\right) \right]$$

We sample training data from ${\mathcal D}$

We will call the train data our training batch ${\mathcal B}$

 $\mathcal{B} \sim [\mathcal{U}(\mathcal{D}), ..., \mathcal{U}(\mathcal{D})]$

$$\mathcal{B} = \left[\left(s_j, a_j, r_j, s_j', d_j\right), ..., \left(s_k, a_k, r_k, s_k', d_k\right) \right]$$

Randomly sampling old data helps mitigate correlations between data, improving training stability

Randomly sampling old data helps mitigate correlations between data, improving training stability
Replay Buffers

Randomly sampling old data helps mitigate correlations between data, improving training stability

Biased towards many prior policies instead of one

Replay Buffers

Randomly sampling old data helps mitigate correlations between data, improving training stability

Biased towards many prior policies instead of one


```
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi_e)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

```
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi_e)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, train_data)
    metrics = evaluate(env, pi)
```

We make a few modifications to the Q learning objective to improve performance

We make a few modifications to the Q learning objective to improve performance

1. Early termination using d

We make a few modifications to the Q learning objective to improve performance

- 1. Early termination using d
- 2. Target networks

We make a few modifications to the Q learning objective to improve performance

- 1. Early termination using d
- 2. Target networks

Recall the standard Q learning objective

$$\min_{\theta} \left(Q(s, a, \theta) - \left(r + \gamma \cdot \max_{\{a' \in A\}} Q(s', a', \theta) \right) \right)^2$$

Recall the standard Q learning objective

$$\min_{\boldsymbol{\theta}} \left(Q(s, a, \boldsymbol{\theta}) - \left(r + \gamma \cdot \max_{\{a' \in A\}} Q(s', a', \boldsymbol{\theta}) \right) \right)^2$$

Rather than learn to output 0 at terminal states, we modify the objective

$$\min_{\boldsymbol{\theta}} \left(Q(s, a, \boldsymbol{\theta}) - \left(r + \neg \boldsymbol{d} \cdot \boldsymbol{\gamma} \cdot \max_{\{a' \in A\}} Q(s', a', \boldsymbol{\theta}) \right) \right)^2$$

Recall the standard Q learning objective

$$\min_{\boldsymbol{\theta}} \left(Q(s, a, \boldsymbol{\theta}) - \left(r + \gamma \cdot \max_{\{a' \in A\}} Q(s', a', \boldsymbol{\theta}) \right) \right)^2$$

Rather than learn to output 0 at terminal states, we modify the objective

$$\min_{\boldsymbol{\theta}} \left(Q(s, a, \boldsymbol{\theta}) - \left(r + \neg \boldsymbol{d} \cdot \boldsymbol{\gamma} \cdot \max_{\{a' \in A\}} Q(s', a', \boldsymbol{\theta}) \right) \right)^2$$

For terminal transitions, this reduces to

$$\min_{\theta} \left(Q(s, a, \theta) - r \right)^2$$

We make a few modifications to the Q learning objective to improve performance

- 1. Early termination using d
- 2. Target networks

Traditional Q learning used a table

	s = 0	s = 1	s = 2
a = 0	1	3	2
a = 1	7	4	5
a=2	1	0	0

Traditional Q learning used a table

	s = 0	s = 1	s = 2
a = 0	1	3	2
a = 1	7	4	5
a=2	1	0	0

Updates are very well defined

	s = 0	s = 1	s = 2
a = 0	5	3	2
a = 1	7	4	5
a=2	1	0	0

Traditional Q learning used a table

	s = 0	s = 1	s = 2
a = 0	1	3	2
a = 1	7	4	5
a=2	1	0	0

Updates are very well defined

	s = 0	s = 1	s = 2
a = 0	5	3	2
a = 1	7	4	5
a=2	1	0	0

Neural networks are different. Increasing a single (s = 0, a = 0)entry will often **perturb** the Q value for all states and actions.

	s = 0	s = 1	s = 2
a = 0	5	4	4
a = 1	9	5	5
a=2	4	0	0

These perturbations ε ripple through the Q recursion, with the max operator resulting in overestimation

$$Q(s, a, \theta') \leftarrow r + \gamma \max_{a' \in A} [Q(s', a', \theta) + \varepsilon_{\theta}]$$

These perturbations ε ripple through the Q recursion, with the max operator resulting in overestimation

$$Q(s, a, \theta') \leftarrow r + \gamma \max_{a' \in A} [Q(s', a', \theta) + \varepsilon_{\theta}]$$

$$Q(s, a, \theta'') \leftarrow r + \gamma \Bigl(\max_{a' \in A} [Q(s', a', \theta') + \varepsilon_{\theta} + \varepsilon_{\theta'}] \Bigr)$$

These perturbations ε ripple through the Q recursion, with the max operator resulting in overestimation

$$Q(s, a, \theta') \leftarrow r + \gamma \max_{a' \in A} [Q(s', a', \theta) + \varepsilon_{\theta}]$$

$$Q(s, a, \theta'') \leftarrow r + \gamma \Big(\max_{a' \in A} [Q(s', a', \theta') + \varepsilon_{\theta} + \varepsilon_{\theta'}] \Big)$$

$$Q(s, a, \theta''') \leftarrow r + \gamma \left(\max_{a' \in A} [Q(s', a', \theta'') + \varepsilon_{\theta} + \varepsilon_{\theta'} + \varepsilon_{\theta''}] \right)$$

These perturbations ε ripple through the Q recursion, with the max operator resulting in overestimation

$$Q(s, a, \theta') \leftarrow r + \gamma \max_{a' \in A} [Q(s', a', \theta) + \varepsilon_{\theta}]$$

$$Q(s, a, \theta'') \leftarrow r + \gamma \bigg(\max_{a' \in A} [Q(s', a', \theta') + \varepsilon_{\theta} + \varepsilon_{\theta'}] \bigg)$$

$$Q(s, a, \theta''') \leftarrow r + \gamma \left(\max_{a' \in A} [Q(s', a', \theta'') + \varepsilon_{\theta} + \varepsilon_{\theta'} + \varepsilon_{\theta''}] \right)$$

Compounding pertubations combined with the max operator result in exploding Q values (i.e., $Q(\cdot, \cdot) = \infty)$

Compounding pertubations combined with the max operator result in exploding Q values (i.e., $Q(\cdot, \cdot) = \infty)$

Compounding pertubations combined with the max operator result in exploding Q values (i.e., $Q(\cdot, \cdot) = \infty)$

Solution 1: Constrained optimization of neural networks (hard)

Compounding pertubations combined with the max operator result in exploding Q values (i.e., $Q(\cdot, \cdot) = \infty)$

Solution 1: Constrained optimization of neural networks (hard)Solution 2: Very large batch sizes that cover all (*s*, *a*) (intractable)

Compounding pertubations combined with the max operator result in exploding Q values (i.e., $Q(\cdot, \cdot) = \infty)$

Solution 1: Constrained optimization of neural networks (hard)
Solution 2: Very large batch sizes that cover all (*s*, *a*) (intractable)
Solution 3: Surrogate target network to break recurrence (easy)

Solution 3: Surrogate **target network** to break recurrence (easy)

Initialize target parameters $\psi = \theta$

$$Q(s, a, \theta') \leftarrow r + \gamma \max_{a' \in A} \left[Q(s', a', \psi) + \varepsilon_{\psi} \right]$$

Solution 3: Surrogate **target network** to break recurrence (easy) Initialize target parameters $\psi = \theta$

$$Q(s, a, \theta') \leftarrow r + \gamma \max_{a' \in A} \left[Q(s', a', \psi) + \varepsilon_{\psi} \right]$$

$$Q(s, a, \theta'') \leftarrow r + \gamma \Big(\max_{a' \in A} \big[Q(s', a', \psi) + \varepsilon_\psi \big] \Big)$$

Solution 3: Surrogate **target network** to break recurrence (easy) Initialize target parameters $\psi = \theta$

$$Q(s, a, \theta') \leftarrow r + \gamma \max_{a' \in A} \left[Q(s', a', \psi) + \varepsilon_{\psi} \right]$$

$$Q(s, a, \theta'') \leftarrow r + \gamma \Big(\max_{a' \in A} \big[Q(s', a', \psi) + \varepsilon_{\psi} \big] \Big)$$

$$Q(s, a, \theta''') \leftarrow r + \gamma \Big(\max_{a' \in A} \big[Q(s', a', \psi) + \varepsilon_{\psi} \big] \Big)$$

Solution 3: Surrogate **target network** to break recurrence (easy) Initialize target parameters $\psi = \theta$

$$Q(s, a, \theta') \leftarrow r + \gamma \max_{a' \in A} \left[Q(s', a', \psi) + \varepsilon_{\psi} \right]$$

$$Q(s, a, \theta'') \leftarrow r + \gamma \Bigl(\max_{a' \in A} \bigl[Q(s', a', \psi) + \varepsilon_{\psi} \bigr] \Bigr)$$

$$Q(s, a, \theta''') \leftarrow r + \gamma \Big(\max_{a' \in A} \big[Q(s', a', \psi) + \varepsilon_{\psi} \big] \Big)$$

After a while, set $\psi = \theta$ again

Behold, the combination of early termination and target networks

$$Q(s, a, \theta) = r + \neg \boldsymbol{d} \cdot \boldsymbol{\gamma} \cdot \max_{a' \in A} Q(s', a', \boldsymbol{\psi})$$

Behold, the combination of early termination and target networks

$$Q(s, a, \theta) = r + \neg d \cdot \gamma \cdot \max_{a' \in A} Q(s', a', \psi)$$

$$Q(s, a, \theta) - \left(r + \neg \boldsymbol{d} \cdot \boldsymbol{\gamma} \cdot \max_{a' \in A} Q(s', a', \boldsymbol{\psi})\right) = 0$$

Behold, the combination of early termination and target networks

$$Q(s, a, \theta) = r + \neg \boldsymbol{d} \cdot \gamma \cdot \max_{a' \in A} Q(s', a', \psi)$$

$$Q(s, a, \theta) - \left(r + \neg \boldsymbol{d} \cdot \boldsymbol{\gamma} \cdot \max_{a' \in A} Q(s', a', \boldsymbol{\psi})\right) = 0$$

The standard objective for DQN is

$$\min_{\boldsymbol{\theta}} \left(Q(s, a, \boldsymbol{\theta}) - \left(r + \neg \boldsymbol{d} \cdot \boldsymbol{\gamma} \cdot \max_{a' \in A} Q(s', a', \boldsymbol{\psi}) \right) \right)^2$$

We need to make a few small updates given our new objective

```
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta = Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)
```

for update in range(num_updates):
 collected_data = collect_training_data(env, pi_e)
 dataset += collected_data
 train_data = dataset.sample()
 theta = train(Q, theta, train_data)
 metrics = evaluate(env, pi)

Initialize target parameters, and use target params in loss function

```
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
==> theta, psi = Q.init(seed=0), Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi_e)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, psi, train_data)
    metrics = evaluate(env, pi)
```

Evaluation

Same as collect_training_data but use π not π_E

```
env = LunarLander()
Q = nn.Module(env.state_space, env.action_space)
theta, psi = Q.init(seed=0), Q.init(seed=0)
pi, pi_e = max_q(Q, theta), e_greedy(Q, theta)
```

```
for update in range(num_updates):
    collected_data = collect_training_data(env, pi_e)
    dataset += collected_data
    train_data = dataset.sample()
    theta = train(Q, theta, psi, train_data)
    metrics = evaluate(env, pi)
```

Summary

- Review
- State of the field
- Implement Deep Q Networks (DQN) (Mnih et al.)

Next Time

- Zach, Riccardo, Grace, Dylan, and Saksham will be lecturing
 - 1. Give us a hint on the topic!
 - 2. Turn in reports (email is best)
 - 3. 10 min presentation + 5 min questions and discussion
 - Next lecture is not recorded (reduce anxiety)
- Miniproject handout
 - Moodle says due 22 March 16:00